Pulmonary tuberculosis predictors and rapid molecular diagnosis

Authors

  • Matilde Outeda Universidad de la República, Facultad de Medicina, Hospital de Clínicas, Depto. de Laboratorio de Patología Clínica, Asistente
  • Elizabeth Marchissio ASSE, Hospital Pasteur, Depto. de Emergencia
  • Pilar Gadea Universidad de la República, Facultad de Medicina, Hospital de Clínicas, Depto. de Laboratorio de Patología Clínica, Prof. Adj.
  • Ivana Labadie ASSE, Hospital Pasteur, Laboratorio Central, Ex Pasante. Licenciada en Laboratorio Clínico
  • Alice Bica ASSE, Hospital Pasteur, Depto. de Emergencia
  • Verónica Seija Universidad de la República, Facultad de Medicina, Hospital de Clínicas, Depto. de Laboratorio de Patología Clínica, Prof. Agdo.

DOI:

https://doi.org/10.29193/RMU.37.1.5

Keywords:

TUBERCULOSIS, MYCOBACTERIUM TUBERCULOSIS, MOLECULAR DIAGNOSTICS, RISK FACTORS

Abstract

According to global estimations, there were approximately 10 million new cases of tuberculosis in 2018. Molecular diagnosis constitutes a rapidly growing diagnostic tool for tuberculosis. Risk predictors for pulmonary tuberculosis are varied and they depend on the population studied.
The study aimed to assess the performance of M. tuberculosis detection by use of Xpert® MTB/RIF diagnostic test to diagnose pulmonary tuberculosis and to identify predictive factors for this disease in patients assisted at Pasteur Hospital in Montevideo.

 A descriptive, observational and transversal study was conducted, which included 254 patients, 68 of which had pulmonary tuberculosis. Sensitivity of the Xpert MTB/RIF assay to detect M. tuberculosis was 100% (CI 95%: 91.2-100) and specificity 95.1% (CI 95%: 83.9-98.7). Multivariate analysis evidenced the following to be the independent predictors that detect pulmonary tuberculosis: close contact with other cases of tuberculosis (p<0.001), coca-paste consumption (p=0.006) and evidence of loss of weight (p<0,001).
To sum up, the Xpert® MTB/RIF assay proved to be an excellent diagnostic tool in our population with a high prevalence of pulmonary tuberculosis. Independent predictors for this disease show that, in the population studied, control strategies require a multidisciplinary approach.

References

1) World Health Organization. Global tuberculosis report 2019. WHO, 2019. Disponible en: https://apps.who.int/iris/ bitstream/handle/10665/329368/9789241565714- eng.pdf?ua=1. [Consulta: 22 agosto 2020].
2) Comisión Honoraria para la Lucha Antituberculosa y Enfermedades Prevalentes. Informe tuberculosis 2018. CHLA-EP, Montevideo. Disponible en: http://chlaep. org.uy/wp-content/uploads/2019/05/Situaci%C3%B3n-Tuberculosis-Uruguay-2018.pdf. [Consulta: 2 agosto 2020].
3) Narasimhan P, Wood J, Macintyre CR, Mathai D. Risk factors for tuberculosis. Pul Med 2013; 828939. doi: 10.1155/2013/828939.
4) Diagnosis of tuberculosis disease. En: Centers for Disease Control and Prevention. Core curriculum on tuberculosis: what the clinician should know. CDC, 2013: 75-108.
5) World Health Organization. Automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB/RIF assay for the diagnosis of pulmonary and extra-pulmonary TB in adults and children. Policy update. Geneva: WHO, 2013. Disponible en: https://apps. who.int/iris/bitstream/handle/10665/112472/ 9789241506335_eng.pdf?sequence=1 [Consulta: 2 agosto 2020].
6) World Health Organization. Rapid implementation of the Xpert MTB/RIF diagnostic test. Technical and operational ‘How-to’ practical considerations. Geneva: WHO, 2011. Disponible en: https://www.who.int/tb/publications/tb-amplificationtechnology-implementation/en/ [Consulta: 28 julio 2020].
7) Organización Panamericana de la Salud. Manual para el diagnóstico bacteriológico de la tuberculosis. Normas y guía técnica. Parte II: Cultivos. OPS, 2008. Disponible en: https://iris.paho.org/bitstream/handle/10665.2/18616/tblabscultivo_2008.pdf?sequence=1&isAllowed=y [Consulta: 2 agosto 2020].
8) Guía nacional para el manejo de la tuberculosis. Ministerio de Salud, CHLA-EP, Facultad de Medicina. Montevideo, 2016. Disponible en: http://www.chlaep.org.uy/descargas/programas-control-tuberculosis/normas/guia-nacional-para-el-manejo.pdf [Consulta: 2 agosto 2020].
9) Vallejo P, Rodríguez JC, Searle A, Farga V. Xpert MTB/RIF en el diagnóstico de tuberculosis. Rev Chil Enf Respir 2015; 31: 127-131. doi: 10.4067/S0717-7348¬2015000200010.
10) Helb D, Jones M, Story E, Boehme C, Wallace E, Ho K, et al. Rapid detection of mycobacterium tuberculosis and rifampin resistance by use of on-demand, near-patient technology. J Clin Microbiol 2010; 48:229-37. doi: 10.1128/JCM. 01463-09.
11) Blakemore R, Story E, Helb D, Kop JA, Banada P, Owens MR, et al. Evaluation of the analytical performance of the Xpert MTB/RIF Assay. J Clin Microbiol 2010; 48:2495-501. doi: 10.1128/JCM.00128-10.
12) Zeka AN, Tasbakan S, Cavusoglu C. Evaluation of the GeneXpert MTB/RIF assay for rapid diagnosis of tuberculosis and detection of rifampin resistance in pulmonary and extrapulmonary specimens. J Clin Microbiol 2011; 49:4138-41. doi: 10.1128/JCM.05434-11.
13) Friedrich SO, Rachow A, Saathoff E, Singh, K, Mangu CD, Dawson R, et al. Assessment of the sensitivity and specificity of Xpert MTB/RIF assay as an early sputum biomarker of response to tuberculosis treatment. Lancet Respirator Med 2013;1:462-70. doi: 10.1016/s2213-2600(13)70119-x.
14) Theron G, Venter R, Smith L, Esmail A, Randall P, Sood V, et al. False-positive Xpert MTB/RIF results in retested patients with previous tuberculosis: frequency, profile, and prospective clinical outcomes. J Clin Microbiol 2018; 56:e01696-17. doi: 10.1128/JCM.01696-17.
15) Comisión Honoraria para la Lucha Antituberculosa y Enfermedades Prevalentes. Programa Nacional de Control de la Tuberculosis. Informe Año 2014. Cifras Definitivas. Montevideo: CHLA-EP, 2014. Disponible en: http://www.chlaep.org.uy/descargas/programas-control-tuberculosis/estadisticas/2014-cifras-definitivas.pdf C [Consulta: 2 agosto 2020].
16) Rasheed W, Rao NA, Adel H, Baig MS, Adil SO. Diagnostic accuracy of xpert MTB/RIF in sputum smear-negative pulmonary tuberculosis. Cureus 2019; 11(8):e5391. doi: 10.7759/cureus.539.
17) Greenway C, Menzies D, Fanning A, Grewal R, Yuan L, Fitzgerald JM, et al. Delay in diagnosis among hospitalized patients with active tuberculosis – predictors and outcomes. Am J Respir Crit Care Med 2002; 165:927-33. doi: 10.1164/ajrccm.165.7.2107040.
18) Morrison J, Pai M, Hopewell PC. Tuberculosis and latent tuberculosis infection in close contacts of people with pulmonary tuberculosis in low-income and middle-income countries: a systematic review and meta-analysis. Lancet Infect Dis 2008; 8:359-68. doi: 10.1016/S1473-3099(08)70071-9.
19) Abin-Carriquiry JA, Martínez-Busi M, Galvalisi M, Minteguiaga M, Prieto JP, Scorza MC. Identification and quantification of cocaine and active adulterants in coca-paste seized samples: useful scientific support to health care. Neurotox Res 2018; 34(2):295-304. doi: 10.1007/s12640- 018-9887-1.
20) Moraes M, Scorza C, Abin-Carriquiry JA, Pascale A, González G, Umpiérrez E. Consumo de pasta base de cocaína en Uruguay en el embarazo, su incidencia, características y repercusiones. Arch Ped Urug 2010; 81:100-4. Disponible en: http://www.scielo.edu.uy/scielo.php?script=sci_arttext&pid=S1688-12492010000200006 [Consulta: 2 agosto 2020].
21) Deiss RG, Rodwell TC, Garfein RS. Tuberculosis and illicit drug use: review and update. Clin Infect Dis 2009; 48:72-82. doi: 10.1086/594126.
22) Leonhardt KK, Gentile F, Gilbert BP, Aiken M. A cluster of tuberculosis among crack house contacts in San Mateo County, California. Am J Public Health 1994; 84:1834-6. doi: 10.2105/ajph.84.11.1834.
23) Reyes JC, Robles RR, Colón HM, Marrero CA, Castillo X, Meléndez M. Mycobacterium tuberculosis infection among crack and injection drug users in San Juan, Puerto Rico. P R Health Sci J 1996; 15:233-6.
24) Story A, Bothamley G, Hayward A. Crack cocaine and infectious tuberculosis. Emerg Infect Dis 2008; 14:1466-9. doi: 10.3201/eid1409.070654.
25) do Valle Leone de Oliveira SM, Ferreira da Silva E, Coimbra Motta-Castro AR, de Oliveira Landgraf de Castro V, Stábile AC, Mello Miranda Paniago A, et al. Tuberculosis infection among cocaine crack users in Brazil. Int J Drug Policy 2018; 59:24-7. doi: 10.1016/j.drugpo.2018.06.012.
26) Baldwin GC, Tashkin DP, Buckley DM, Park AN, Dubinett SM, Roth MD. Marijuana and cocaine impair alveolar macrophage function and cytokine production. Am J Respir Crit Care Med 1997; 156:1606-13. doi: 10.1164/ajrccm. 156.5.9704146.
27) Roth MD, Whittaker K, Salehi K, Tashkin DP, Baldwin GC. Mechanisms for impaired effector function in alveolar macrophages from marijuana and cocaine smokers. J Neuroimmunol 2004; 147:82-6. doi: 10.1016/j.jneuroim. 2003.10.017.
28) Observatorio Uruguayo de Drogas. Pasta Base de Cocaína en Uruguay. Compilación. Montevideo: OUD, 2014. Disponible en: https://www.gub.uy/junta-nacional-drogas/sites/junta-nacional-drogas/files/2018-01/Pasta_Base_en_Uruguay_Compilacion_0.pdf [Consulta: 4 agosto 2020].
29) Silva MR, Pereira JC, Costa RR, Dias JA, Guimarães MDC, Leite ICG. Drug addiction and alcoholism as predictors for tuberculosis treatment default in Brazil: a prospective cohort study. Epidemiol Infect 2017; 145:3516-24. doi: 10.1017/S0950268817002631
30) Madeira de Oliveira S, Altmayer S, Zanon M, Alves Sidney-Filho L, Schneider Moreira AL, de Tarso Dalcin P, et al. Predictors of noncompliance to pulmonary tuberculosis treatment: an insight from South America. Plos One 2018; 13:e0202593. doi: 10.1371/journal.pone.0202593.

Published

2021-03-31

How to Cite

1.
Outeda M, Marchissio E, Gadea P, Labadie I, Bica A, Seija V. Pulmonary tuberculosis predictors and rapid molecular diagnosis. Rev. Méd. Urug. [Internet]. 2021 Mar. 31 [cited 2024 Dec. 22];37(1):e37106. Available from: https://revista.rmu.org.uy/index.php/rmu/article/view/679

Most read articles by the same author(s)