Epifisiólisis de fémur proximal: resultados y calidad de vida
DOI:
https://doi.org/10.29193/RMU.36.3.4Palabras clave:
EPÍFISIS DESPRENDIDA DE CABEZA FEMORAL, NIÑO, CALIDAD DE VIDAResumen
Introducción: el impacto sobre la calidad de vida de los pacientes con deslizamientos de epífisis femoral proximal inestables y estables es poco conocido. El objetivo de este estudio fue conocer los resultados terapéuticos utilizando un score de calidad de vida y las complicaciones de la población afectada en un centro de referencia ortopédico.
Material y método: estudio de cohorte que incluyó 28 niños tratados en el Centro Hospitalario Pereira Rossell entre 2010 y 2016. Se evaluaron los pacientes clínica y radiológicamente con un mínimo de dos años de seguimiento posoperatorio. Fue utilizado el cuestionario International Hip Outcome Tool (iHOT-12), para medir resultados reportados por el paciente. Se evaluaron las complicaciones necrosis avascular, condrolisis y pinzamiento femoroacetabular.
Resultados: se identificaron 38 caderas tratadas por deslizamiento epifisario femoral proximal; 28 clasificadas estables (74%) y 10 inestables (26%). La fijación in situ fue el tratamiento quirúrgico más frecuentemente utilizado. Al final del seguimiento se evaluaron 27 pacientes y el iHOT-12 mostró una diferencia significativa entre deslizamientos estables y deslizamientos inestables 70 (rango 38-95) y 86 (57-100); p=0,017), respectivamente. No se observó necrosis avascular ni condrolisis y el pinzamiento femoroacetabular fue de 19% (n=7 caderas; 6 estables y 1 inestable).
Conclusiones: los resultados clínicos de calidad de vida a través de scores reportados por los pacientes (PROM) utilizados eran significativamente mejores en los deslizamientos de la epífisis femoral proximal (DEFP) inestables en comparación con los DEFP estables. La ausencia de necrosis avascular en caderas inestables y la mayor proporción de pinzamiento femoroacetabular en los deslizamientos estables, a pesar de una remodelación femoral notoria luego de fijación in situ, podría explicarnos estos hallazgos inesperados.
Citas
(2) Pritchett JW, Perdue KD. Mechanical factors in slipped capital femoral epiphysis. J Pediatr Orthop 1988; 8(4):385-8.
(3) Hagglund G. Pinning the slipped and contralateral hips in the treatment of slipped capital femoral epiphysis. J Child Orthop 2017; 11(2):110-3.
(4) Kroin E, Frank JM, Haughom B, Kogan M. Two cases of avascular necrosis after prophylactic pinning of the asymptomatic, contralateral femoral head for slipped capital femoral epiphysis: case report and review of the literature. J Pediatr Orthop 2015; 35(4):363-6.
(5) Herngren B, Stenmarker M, Vavruch L, Hagglund G. Slipped capital femoral epiphysis: a population-based study. BMC Musculoskelet Disord 2017; 18(1):304.
(6) Loder RT, O’Donnell PW, Didelot WP, Kayes KJ. Valgus slipped capital femoral epiphysis. J Pediatr Orthop 2006; 26(5):594-600.
(7) Loder RT, Richards BS, Shapiro PS, Reznick LR, Aronson DD. Acute slipped capital femoral epiphysis: the importance of physeal stability. J Bone Joint Surg Am 1993; 75(8):1134-40.
(8) Zaltz I, Baca G, Clohisy JC. Unstable SCFE: review of treatment modalities and prevalence of osteonecrosis. Clin Orthop Relat Res 2013; 471(7):2192-8.
(9) Ulici A, Carp M, Tevanov I, Nahoi CA, Sterian AG, Cosma D. Outcome of pinning in patients with slipped capital femoral epiphysis: risk factors associated with avascular necrosis, chondrolysis, and femoral impingement. J Internat Med Res 2018; 46(6):2120-7.
(10) Lang P, Panchal H, Delfosse EM, Silva M. The outcome of in-situ fixation of unstable slipped capital femoral epiphysis. J Pediatr Orthop B 2019; 28(5):452-7.
(11) Herngren B, Stenmarker M, Enskar K, Hagglund G. Outcomes after slipped capital femoral epiphysis: a population-based study with three-year follow-up. J Child Orthop 2018; 12(5):434-43.
(12) Roaten J, Spence DD. Complications related to the treatment of slipped capital femoral epiphysis. Orthop Clin North Am 2016; 47(2):405-13.
(13) Hosalkar HS, Pandya NK, Bomar JD, Wenger DR. Hip impingement in slipped capital femoral epiphysis: a changing perspective. J Child Orthop 2012; 6(3):161-72.
(14) Ortegren J, Peterson P, Svensson J, Tiderius CJ. Persisting CAM deformity is associated with early cartilage degeneration after slipped capital femoral epiphysis: 11-year follow-up including dGEMRIC. Osteoarthritis Cartilage 2018; 26(4):557-63.
(15) Larson AN, Sierra RJ, Yu EM, Trousdale RT, Stans AA. Outcomes of slipped capital femoral epiphysis treated with in situ pinning. J Pediatr Orthop 2012; 32(2):125-30.
(16) de Poorter JJ, Beunder TJ, Gareb B, Oostenbroek HJ, Bessems GH, van der Lugt JC, et al. Long-term outcomes of slipped capital femoral epiphysis treated with in situ pinning. J Child Orthop 2016; 10(5):371-9.
(17) Nectoux E, Décaudain J, Accadbled F, Hamel A, Bonin N, Gicquel P, et al. Evolution of slipped capital femoral epiphysis after in situ screw fixation at a mean 11 years’ follow-up: a 222 case series. Orthop Traumatol Surg Res 2015; 101(1):51-4.
(18) Escott BG, De La Rocha A, Jo CH, Sucato DJ, Karol LA. Patient-reported health outcomes after in situ percutaneous fixation for slipped capital femoral epiphysis: an average twenty-year follow-up study. J Bone Joint Surg Am 2015; 97(23):1929-34.
(19) Sansone M, Ahlden M, Jónasson P, Thomeé C, Sward L, Ohlin A, et al. Outcome after hip arthroscopy for femoroacetabular impingement in 289 patients with minimum 2-year follow-up. Scand J Med Sci Sports 2017; 27(2):230-5.
(20) Baumann F, Popp D, Muller K, Muller M, Schmitz P, Nerlich M, et al. Validation of a German version of the international hip outcome tool 12 (iHOT12) according to the COSMIN checklist. Health Qual Life Outcomes 2016; 14:3.
(21) Thorborg K, Tijssen M, Habets B, Bartels EM, Roos EM, Kemp J, et al. Patient-Reported Outcome (PRO) questionnaires for young to middle-aged adults with hip and groin disability: a systematic review of the clinimetric evidence. Br J Sports Med 2015; 49(12):812.
(22) Cibere J, Thorne A, Bellamy N, Greidanus N, Chalmers A, Mahomed N, et al. Reliability of the hip examination in osteoarthritis: effect of standardization. Arthritis Rheum 2008; 59(3):373-81.
(23) Klaue K, Durnin CW, Ganz R. The acetabular rim syndrome. A clinical presentation of dysplasia of the hip. J Bone Joint Surg Br 1991; 73(3):423-9.
(24) Southwick WO. Osteotomy through the lesser trochanter for slipped capital femoral epiphysis. J Bone Joint Surg Am 1967;49(5):807-35.
(25) Pring M, Adamczyk M, Hosalkar H, Bastrom T, Wallace D, Newton P. In situ screw fixation of slipped capital femoral epiphysis with a novel approach: a double-cohort controlled study. J Childr Orthop 2010; 4(3):239-44.
(26) Notzli HP, Wyss TF, Stoecklin CH, Schmid MR, Treiber K, Hodler J. The contour of the femoral head-neck junction as a predictor for the risk of anterior impingement. J Bone Joint Surg Br 2002; 84(4):556-60.
(27) Griffin DR, Dickenson EJ, Wall PDH, Achana F, Donovan JL, Griffin J, et al. Hip arthroscopy versus best conservative care for the treatment of femoroacetabular impingement syndrome (UK FASHIoN): a multicentre randomized controlled trial. Lancet 2018; 391(10136):2225-35.
(28) Ficat RP. Idiopathic bone necrosis of the femoral head. Early diagnosis and treatment. J Bone Joint Surg Br 1985; 67(1):3-9.
(29) Ruiz-Iban MA, Seijas R, Sallent A, Ares O, Marín-Peña O, Muriel A, et al. The international hip outcome tool-33 (iHOT-33): multicenter validation and translation to Spanish. Health Qual Life Outcomes 2015; 13:62.
(30) O’Brien ET, Fahey JJ. Remodeling of the femoral neck after in situ pinning for slipped capital femoral epiphysis. J Bone Joint Surg Am 1977; 59(1):62-8.
(31) Dawes B, Jaremko JL, Balakumar J. Radiographic assessment of bone remodelling in slipped upper femoral epiphyses using Klein’s line and the alpha angle of femoral-acetabular impingement: a retrospective review. J Pediatr Orthop 2011; 31(2):153-8.
(32) Akiyama M, Nakashima Y, Kitano T, Nakamura T, Takamura K, Kohno Y, et al. Remodelling of femoral head-neck junction in slipped capital femoral epiphysis: a multicentre study. Int Orthop 2013; 37(12):2331-6.
(33) Ortegren J, Bjorklund-Sand L, Engbom M, Tiderius CJ. Continued growth of the femoral neck leads to improved remodeling after in situ fixation of slipped capital femoral epiphysis. J Pediatr Orthop 2018; 38(3):170-5.
(34) Murgier J, de Gauzy JS, Jabbour FC, Iniguez XB, Cavaignac E, Pailhe R, et al. Long-term evolution of slipped capital femoral epiphysis treated by in situ fixation: a 26 years follow-up of 11 hips. Orthop Rev (Pavia) 2014; 6(2):5335.
(35) Loder RT. What is the cause of avascular necrosis in unstable slipped capital femoral epiphysis and what can be done to lower the rate? J Pediatr Orthop 2013; 33 (Suppl 1):S88-91.
(36) Crepeau A, Birnbaum M, Vander Have K, Herrera-Soto J. Intracapsular pressures after stable slipped capital femoral epiphysis. J Pediatr Orthop 2015; 35(8):e90-2.
(37) Hosseinzadeh P, Iwinski HJ, Salava J, Oeffinger D. Delay in the diagnosis of stable slipped capital femoral epiphysis. J Pediatr Orthop 2017; 37(1):e19-e22.
(38) Murray AW, Wilson NI. Changing incidence of slipped capital femoral epiphysis: a relationship with obesity? J Bone Joint Surg Br 2008; 90(1):92-4.
(39) Halverson SJ, Warhoover T, Mencio GA, Lovejoy SA, Martus JE, Schoenecker JG. Leptin elevation as a risk factor for slipped capital femoral epiphysis independent of obesity status. J Bone Joint Surg Am 2017; 99(10):865-72.