Epiphysiolysis of the proximal femur: results and quality of life
DOI:
https://doi.org/10.29193/RMU.36.3.4Keywords:
SLIPPED CAPITAL FEMORAL EPIPHYSES, CHILD, QUALITY OF LIFEAbstract
Introduction: the impact on the quality of life of patients with unstable and stable slipped capital femoral epiphysis is rather unknown. The study aims to learn about therapeutic outcomes in a quality of life score and the complications of the affected population in an orthopedics referecence center.
Method: this cohort study included 28 children treated at the Pereira Rossell Hospital Center between 2010 and 2016. Patients were assessed both clinically and with x-rays, with a 2-year minimum postoperative follow-up. The "International Hip Outcome Tool" (iHOT-12) questionnaire was used to measure the results reported by patients. Avascular necrosis, chondrolysis and femoroacetabular impingement were the complications evaluated by the study.
Results: the study identified 38 hips treated for slipped capital femoral epiphysis. 28 of them were classified as stable (74%) and 10 as unstable (26%). In-situ fixation was the most frequently used surgical treatment. Upon completion of follow-up, 27 patients were assessed and the iHOT12 showed a significant difference between stable and unstable slips (70 (range 38-95) and 86 (57-100); P=0,017) respectively. No avascular necrosis or chondrolysis were observed and femoroacetabular impingement was 19% (n=7 hips; 6 stable and 1 unstable).
Conclusions: quality of life clinical results obtained by PROM were significantly better in the unstable slipping epiphysis of the proximal femur than in the stable epiphysis. Absence of avascular necrosis in unstable hips and the greater proportion of femoroacetabular impingements in stable slips despite a noticeable femoral remodeling following in-situ fixation could explain these surprising results.
References
(2) Pritchett JW, Perdue KD. Mechanical factors in slipped capital femoral epiphysis. J Pediatr Orthop 1988; 8(4):385-8.
(3) Hagglund G. Pinning the slipped and contralateral hips in the treatment of slipped capital femoral epiphysis. J Child Orthop 2017; 11(2):110-3.
(4) Kroin E, Frank JM, Haughom B, Kogan M. Two cases of avascular necrosis after prophylactic pinning of the asymptomatic, contralateral femoral head for slipped capital femoral epiphysis: case report and review of the literature. J Pediatr Orthop 2015; 35(4):363-6.
(5) Herngren B, Stenmarker M, Vavruch L, Hagglund G. Slipped capital femoral epiphysis: a population-based study. BMC Musculoskelet Disord 2017; 18(1):304.
(6) Loder RT, O’Donnell PW, Didelot WP, Kayes KJ. Valgus slipped capital femoral epiphysis. J Pediatr Orthop 2006; 26(5):594-600.
(7) Loder RT, Richards BS, Shapiro PS, Reznick LR, Aronson DD. Acute slipped capital femoral epiphysis: the importance of physeal stability. J Bone Joint Surg Am 1993; 75(8):1134-40.
(8) Zaltz I, Baca G, Clohisy JC. Unstable SCFE: review of treatment modalities and prevalence of osteonecrosis. Clin Orthop Relat Res 2013; 471(7):2192-8.
(9) Ulici A, Carp M, Tevanov I, Nahoi CA, Sterian AG, Cosma D. Outcome of pinning in patients with slipped capital femoral epiphysis: risk factors associated with avascular necrosis, chondrolysis, and femoral impingement. J Internat Med Res 2018; 46(6):2120-7.
(10) Lang P, Panchal H, Delfosse EM, Silva M. The outcome of in-situ fixation of unstable slipped capital femoral epiphysis. J Pediatr Orthop B 2019; 28(5):452-7.
(11) Herngren B, Stenmarker M, Enskar K, Hagglund G. Outcomes after slipped capital femoral epiphysis: a population-based study with three-year follow-up. J Child Orthop 2018; 12(5):434-43.
(12) Roaten J, Spence DD. Complications related to the treatment of slipped capital femoral epiphysis. Orthop Clin North Am 2016; 47(2):405-13.
(13) Hosalkar HS, Pandya NK, Bomar JD, Wenger DR. Hip impingement in slipped capital femoral epiphysis: a changing perspective. J Child Orthop 2012; 6(3):161-72.
(14) Ortegren J, Peterson P, Svensson J, Tiderius CJ. Persisting CAM deformity is associated with early cartilage degeneration after slipped capital femoral epiphysis: 11-year follow-up including dGEMRIC. Osteoarthritis Cartilage 2018; 26(4):557-63.
(15) Larson AN, Sierra RJ, Yu EM, Trousdale RT, Stans AA. Outcomes of slipped capital femoral epiphysis treated with in situ pinning. J Pediatr Orthop 2012; 32(2):125-30.
(16) de Poorter JJ, Beunder TJ, Gareb B, Oostenbroek HJ, Bessems GH, van der Lugt JC, et al. Long-term outcomes of slipped capital femoral epiphysis treated with in situ pinning. J Child Orthop 2016; 10(5):371-9.
(17) Nectoux E, Décaudain J, Accadbled F, Hamel A, Bonin N, Gicquel P, et al. Evolution of slipped capital femoral epiphysis after in situ screw fixation at a mean 11 years’ follow-up: a 222 case series. Orthop Traumatol Surg Res 2015; 101(1):51-4.
(18) Escott BG, De La Rocha A, Jo CH, Sucato DJ, Karol LA. Patient-reported health outcomes after in situ percutaneous fixation for slipped capital femoral epiphysis: an average twenty-year follow-up study. J Bone Joint Surg Am 2015; 97(23):1929-34.
(19) Sansone M, Ahlden M, Jónasson P, Thomeé C, Sward L, Ohlin A, et al. Outcome after hip arthroscopy for femoroacetabular impingement in 289 patients with minimum 2-year follow-up. Scand J Med Sci Sports 2017; 27(2):230-5.
(20) Baumann F, Popp D, Muller K, Muller M, Schmitz P, Nerlich M, et al. Validation of a German version of the international hip outcome tool 12 (iHOT12) according to the COSMIN checklist. Health Qual Life Outcomes 2016; 14:3.
(21) Thorborg K, Tijssen M, Habets B, Bartels EM, Roos EM, Kemp J, et al. Patient-Reported Outcome (PRO) questionnaires for young to middle-aged adults with hip and groin disability: a systematic review of the clinimetric evidence. Br J Sports Med 2015; 49(12):812.
(22) Cibere J, Thorne A, Bellamy N, Greidanus N, Chalmers A, Mahomed N, et al. Reliability of the hip examination in osteoarthritis: effect of standardization. Arthritis Rheum 2008; 59(3):373-81.
(23) Klaue K, Durnin CW, Ganz R. The acetabular rim syndrome. A clinical presentation of dysplasia of the hip. J Bone Joint Surg Br 1991; 73(3):423-9.
(24) Southwick WO. Osteotomy through the lesser trochanter for slipped capital femoral epiphysis. J Bone Joint Surg Am 1967;49(5):807-35.
(25) Pring M, Adamczyk M, Hosalkar H, Bastrom T, Wallace D, Newton P. In situ screw fixation of slipped capital femoral epiphysis with a novel approach: a double-cohort controlled study. J Childr Orthop 2010; 4(3):239-44.
(26) Notzli HP, Wyss TF, Stoecklin CH, Schmid MR, Treiber K, Hodler J. The contour of the femoral head-neck junction as a predictor for the risk of anterior impingement. J Bone Joint Surg Br 2002; 84(4):556-60.
(27) Griffin DR, Dickenson EJ, Wall PDH, Achana F, Donovan JL, Griffin J, et al. Hip arthroscopy versus best conservative care for the treatment of femoroacetabular impingement syndrome (UK FASHIoN): a multicentre randomized controlled trial. Lancet 2018; 391(10136):2225-35.
(28) Ficat RP. Idiopathic bone necrosis of the femoral head. Early diagnosis and treatment. J Bone Joint Surg Br 1985; 67(1):3-9.
(29) Ruiz-Iban MA, Seijas R, Sallent A, Ares O, Marín-Peña O, Muriel A, et al. The international hip outcome tool-33 (iHOT-33): multicenter validation and translation to Spanish. Health Qual Life Outcomes 2015; 13:62.
(30) O’Brien ET, Fahey JJ. Remodeling of the femoral neck after in situ pinning for slipped capital femoral epiphysis. J Bone Joint Surg Am 1977; 59(1):62-8.
(31) Dawes B, Jaremko JL, Balakumar J. Radiographic assessment of bone remodelling in slipped upper femoral epiphyses using Klein’s line and the alpha angle of femoral-acetabular impingement: a retrospective review. J Pediatr Orthop 2011; 31(2):153-8.
(32) Akiyama M, Nakashima Y, Kitano T, Nakamura T, Takamura K, Kohno Y, et al. Remodelling of femoral head-neck junction in slipped capital femoral epiphysis: a multicentre study. Int Orthop 2013; 37(12):2331-6.
(33) Ortegren J, Bjorklund-Sand L, Engbom M, Tiderius CJ. Continued growth of the femoral neck leads to improved remodeling after in situ fixation of slipped capital femoral epiphysis. J Pediatr Orthop 2018; 38(3):170-5.
(34) Murgier J, de Gauzy JS, Jabbour FC, Iniguez XB, Cavaignac E, Pailhe R, et al. Long-term evolution of slipped capital femoral epiphysis treated by in situ fixation: a 26 years follow-up of 11 hips. Orthop Rev (Pavia) 2014; 6(2):5335.
(35) Loder RT. What is the cause of avascular necrosis in unstable slipped capital femoral epiphysis and what can be done to lower the rate? J Pediatr Orthop 2013; 33 (Suppl 1):S88-91.
(36) Crepeau A, Birnbaum M, Vander Have K, Herrera-Soto J. Intracapsular pressures after stable slipped capital femoral epiphysis. J Pediatr Orthop 2015; 35(8):e90-2.
(37) Hosseinzadeh P, Iwinski HJ, Salava J, Oeffinger D. Delay in the diagnosis of stable slipped capital femoral epiphysis. J Pediatr Orthop 2017; 37(1):e19-e22.
(38) Murray AW, Wilson NI. Changing incidence of slipped capital femoral epiphysis: a relationship with obesity? J Bone Joint Surg Br 2008; 90(1):92-4.
(39) Halverson SJ, Warhoover T, Mencio GA, Lovejoy SA, Martus JE, Schoenecker JG. Leptin elevation as a risk factor for slipped capital femoral epiphysis independent of obesity status. J Bone Joint Surg Am 2017; 99(10):865-72.