Silver nanoparticles to treat mycosis associated with diabetic foot

Authors

  • Pablo Orellano Universidad de la República, Facultad de Medicina, Hospital de Clínicas, Unidad de Pie Diabético, Endocrinología y Metabolismo,, Ex Profesor Adjunto
  • María del Huerto Urdangarin Hospital Regional Mercedes. Soriano, Servicio de Endocrinología, Unidad de Pie Diabético, Podóloga
  • Jenifer Silva Universidad de la República, Facultad de Medicina, Endocrinología y Metabolismo, Asistente
  • Germán Botto Universidad de la República, Facultad de Medicina, Departamento de Métodos Cuantitativos, Profesor Adjunto
  • Analía González Hospital Regional Mercedes. Soriano, Servicio de Endocrinología, Unidad de Pie Diabético, Licenciada en Enfermería
  • Lilián Vucovich Universidad de la República, Facultad de Medicina, Unidad de Pie Diabético, Prof. Agdo. Técn. Directora de la Carrera de Podología EUTM
  • Vivian Peirano Hospital Regional Mercedes. Soriano, Microbiología, Magíster Licenciada en Laboratorio

DOI:

https://doi.org/10.29193/RMU.37.1.6

Keywords:

SILVER NANOPARTICLES, ONYCHOMYCOSIS, ANTIFUNGAL AGENTS, DIABETIC FOOT

Abstract

Onychomycosis and tinea pedis represent a significant proportion of infections in the diabetic foot, a common foot problem, and they constitute a threat to the viability of tissues that may provoke secondary bacterial infections. To combat them, antifungal treatments are required for long periods of time, the rates of relapse and reinfection being high. Several studies have proved the safety and effectiveness of silver nano particles (NP Ag) as an antimicrobial agent.
A study was conducted to assess nanoparticle agents for foot dermatomycosis in diabetic patients.
Method: pilot, open, prospective randomized and controlled study in patients who are assisted in a diabetic foot policlinic. 18 patients complied with the inclusion criteria and two homogeneous groups were formed.

Both groups received standard treatment consisting in topic antifungal and mechanical roughing. The intervention groups used a textile (stockings) made with silver nanoparticle threads. Clinical and microbiological control was made during 12 weeks, also assessing the remission percentage and the time it took to achieve it.
Results: onychomycosis and trichophyton rubrum prevailed. The intervention group showed a greater percentage of remission of lesions in a period of time that was shorter than that of the control group.
Conclusions: the use of stockings made with NP Ag threads was associated with a greater probability of complete healing, in a 12-week period, despite the fact that the number of patients was not statistically significant. This could contribute to the prevention of supplementary infections or ulcers in the diabetic foot.

References

1) Lavery L, Davis K, Berriman S, Braun L, Nichols A, Kim P, et al. WHS guidelines update: Diabetic foot ulcer treatment guidelines. Wound Repair Regen 2016; 24(1):112-26.
2) Sandoya E. Diabetes y enfermedad cardiovascular en Uruguay. Rev Urug Cardiol 2016; 31(3):505-14.
3) Boulton A. The diabetic foot: a global view. Diabetes Metab Res Rev 2000; 16(Suppl 1):S2-5.
4) Lim H, Collins S, Resneck JJr, Bolognia J, Hodge J, Rohrer T, et al. The burden of skin disease in the United States. J Am Acad Dermatol; 76(5):958-972.e2. doi: 10.1016/j. jaad.2016.12.043
5) Jupiter D, Thorud J, Buckley C, Shibuya N. The impact of foot ulceration and amputation on mortality in diabetic patients. I: From ulceration to death, a systematic review. Int Wound J 2016; 13(5):892-903.
6) Spichler A, Hurwitz B, Armstrong D, Lipsky B. Microbiology of diabetic foot infections: from Louis Pasteur to ‘crime scene investigation’. BMC Med 2015; 13:2. doi: 10.1186/ s12916-014-0232-0
7) Parada H, Veríssimo C, Brandão J, Nunes B, Boavida J, Duarte R, et al. Dermatomycosis in lower limbs of diabetic patients followed by podiatry consultation. Rev Iberoam Micol 2013; 30(2):103-8. doi: 10.1016/j.riam.2012.09.007
8) Roujeau J, Sigurgeirsson B, Korting H, Kerl H, Paul C. Chronic dermatomycoses of the foot as risk factors for acute bacterial cellulitis of the leg: a case-control study. Dermatology 2004; 209(4):301-7. doi: 10.1159/000080853
9) Bonasse J, Asconegui F, Conti-Díaz I. Estado actual de las dermatofitosis en el Uruguay. Rev Arg Micol 1982; 5(2):29-31.
10) Öztürk A, Taþbakan M, Metin D, Yener C, Uysal S, Yýldýrým Þýmþýr I, et al. A neglected causative agent in diabetic foot infection: a retrospective evaluation of 13 patients with fungal etiology. Turk J Med Sci 2019; 49(1):81-6. doi: 10.3906/sag-1809-74
11) Baran R, Hay R, Garduno J. Review of antifungal therapy and the severity index for assessing onychomycosis: part I. J Dermatolog Treat 2008; 19(2):72-81. doi: 10.1080/09546630701243418
12) Ge L, Li Q, Wang M, Ouyang J, Li X, Xing M. Nanosilver particles in medical applications: synthesis, performance, and toxicity. Int J Nanomedicine 2014; 9:2399-407. doi: 10.2147/IJN.S55015
13) McNeil S. Nanotechnology for the biologist. J Leukoc Biol 2005; 78(3):585-94. doi: 10.1189/jlb.0205074
14) Morones J, Elechiguerra J, Camacho A, Holt K, Kouri J, Ramírez J, et al. The bactericidal effect of silver nanoparticles. Nanotechnology 2005; 16(10):2346-53. doi: 10.1088/0957-4484/16/10/059
15) Chopra I. The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? J Antimicrob Chemother 2007; 59(4):587-90. doi: 10.1093/jac/dkm006
16) Drake P, Hazelwood K. Exposure-related health effects of silver and silver compounds: a review. Ann Occup Hyg 2005; 49(7):575-85.
17) Kiwi J, Pulgarin C. Innovative self-cleaning and bactericide textiles. Catal Today 2010; 151(1-2):2-7.
18) Joshi M, Bhattacharyya A, Ali S. Characterization techniques for nanotechnology applications in textiles. Indian J Fibre Text Res 2008; 33(3):304-17.
19) Potiyaraji P, Kumlangdudsana P, Dubas S. Synthesis of silver chloride nanocrystal on silk fibers. Mater Lett 2007; 61(11-12):2464-6.
20) Toray Textiles Europe Limited. See it SAFE®. Mansfield, UK: Toray, 2020. Disponible en: http://www.ttel. co.uk/TTELSeeItSafe.html. [Consulta: 2020].
21) Zhang F, Wu X, Chen Y, Lin H. Application of silver nanoparticles to cotton fabric as an antibacterial textile finish. Fibers Polym 2009; 10(4):496-501.
22) MacKeen P, Person S, Warner S, Snipes W, Stevens SJr. Silver-coated nylon fiber as an antibacterial agent. Antimicrob Agents Chemother 1987; 31(1):93-9.
23) Radetić M. Functionalization of textile materials with silver nanoparticles. J Mater Sci 2013; 48:95-107. doi: 10.1007/s10853-012-6677-7
24) Hilgenberg B, Prange A, Vossebein L. Testing and regulation of antimicrobial textiles. En: Sun G, ed. Antimicrobial textiles. Cambridge: Elsevier, 2016:7-18.
25) Feldstein S, Totri C, Friedlander S. Antifungal therapy for onychomycosis in children. Clin Dermatol 2015; 33(3): 333-9.
26) Uruguay. Universidad de la República. Facultad de Medicina. Hospital de Clínicas. Repartición Microbiología. Departamento de Laboratorio Clínico. Manual de toma de muestras para estudio bacteriológico, parasitológico y micológico: selección, recolección, conservación y transporte. Montevideo: Hospital de Clínicas, 2004. Disponible en: http://ops-uruguay.bvsalud.org/pdf/laboratorio.pdf. [Consulta: 2020].
27) Carson J. Wound/abscess and soft tissue cultures: aerobic bacteriology. En: Leber A. Clinical microbiology procedures handbook. Washington, DC: ASM Press, 2016:Section 3.13.1.1-3.13.1.20.
28) R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, 2019.
29) Agresti A. An introduction to categorical data analysis. 2 ed. New Jersey: John Wiley & Sons, 2007.
30) Hosmer D, Lemeshow S, May S. Applied survival analysis. regression modeling of time to event data. New Jersey: John Wiley & Sons, 1999.
31) Therneau T. A package for survival analysis in s. version 2.38. Vienna: Institute for Statistics and Mathematics, 2015. Disponible en: https://cran.r-project.org/web/packages/survival/index.html. [Consulta: 2020].
32) Akkus G, Evran M, Gungor D, Karakas M, Sert M, Tetiker T. Tinea pedis and onychomycosis frequency in diabetes mellitus patients and diabetic foot ulcers. A cross sectional - observational study. Pak J Med Sci 2016; 32(4):891-5. doi: 10.12669/pjms.324.10027
33) Prabhu S, Poulose E. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2012; 2:32. doi: 10.1186/ 2228-5326-2-32
34) Kim K, Sung W, Moon S, Choi J, Kim J, Lee D. Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol 2008; 18(8):1482-4.
35) Flores F, de Lima J, Ribeiro R, Alves S, Rolim C, Beck R, et al. Antifungal activity of nanocapsule suspensions containing tea tree oil on the growth of Trichophyton rubrum. Mycopathologia 2013; 175(3-4):281-6.
36) Wang F, Yang P, Choi J, Antovski P, Zhu Y, Xu X, et al. Cross-linked fluorescent supramolecular nanoparticles for intradermal controlled release of antifungal drug-a therapeutic approach for onychomycosis. ACS Nano 2018; 12(7): 6851-9. doi: 10.1021/acsnano.8b02099
37) Kalan L, Brennan M. The role of the microbiome in nonhealing diabetic wounds. Ann N Y Acad Sci 2019; 1435(1):79-92. doi: 10.1111/nyas.13926
38) Li W, Xie X, Shi Q, Zeng H, Ou-Yang Y, Chen Y. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 2010; 85(4):1115-22. doi: 10.1007/s00253-009-2159-5

Published

2021-03-31

How to Cite

1.
Orellano P, Urdangarin M del H, Silva J, Botto G, González A, Vucovich L, et al. Silver nanoparticles to treat mycosis associated with diabetic foot. Rev. Méd. Urug. [Internet]. 2021 Mar. 31 [cited 2024 Nov. 24];37(1):e37107. Available from: https://revista.rmu.org.uy/index.php/rmu/article/view/680

Most read articles by the same author(s)