Fracturas del platillo tibial con hundimiento articular. Comparación entre reconstrucción con injertos óseos y sustitutos sintéticos
Revisión bibliográfica sistematizada
DOI:
https://doi.org/10.29193/RMU.39.1.9Palabras clave:
FRACTURAS DE PLATILLO TIBIAL, HUNDIMIENTO, INJERTOS ÓSEOS, SUSTITUTOS ÓSEOSResumen
Objetivo: comparar si existe diferencia en resultados clínicos, radiológicos y funcionales con el uso de diferentes tipos de injertos óseos o sustitutos sintéticos, así como tiempo quirúrgico y consolidación para el tratamiento de fracturas de platillo tibial con hundimiento articular en pacientes mayores de 18 años.
Material y método: se realizó una búsqueda sistematizada en bases de datos de literatura médica, PubMed, Lilacs, Scielo, Cochrane y portal Timbó. Se utilizaron términos “tibial plateau fracture”, “bone grafting”, “bone substitutes”. Se incluyeron estudios comparativos en seres humanos, pacientes mayores de 18 años, fracturas de platillo tibial que asociaron hundimiento articular, en los cuales se realizó aporte de injerto óseo o material sintético. Artículos en español, inglés, portugués. Publicaciones enero 1980 y diciembre 2021. Se obtuvieron 10 artículos.
Resultados: los tipos de injertos y sustitutos óseos encontrados fueron 10. Las muestras en sumatoria total 524 pacientes. La edad promedio fue 49 años. El promedio de seguimiento fue de 12 meses. Se dividieron los estudios en tres grupos: comparación entre injerto autólogo (IOA) e injerto alogénico, IOA con sustitutos sintéticos, y los que comparan sustitutos sintéticos entre sí. El aloinjerto y los sustitutos sintéticos demostraron no ser inferiores en resultados clínicos, funcionales e imagenológicos, mejorando los tiempos intraoperatorios y disminuyendo complicaciones en el sitio donante con respecto al IOA.
Conclusiones: el IOA continúa siendo el gold standard a pesar de sus posibles complicaciones vinculadas al sitio donante. El aloinjerto y los sustitutos sintéticos representan una opción válida para tratar estas lesiones.
Citas
2) Hohl M. Tibial condylar fractures. J Bone Joint Surg Am 1967; 49(7):1455-67.
3) Kennedy J, Bailey W. Experimental tibial-plateau fractures. Studies of the mechanism and a classification. J Bone Joint Surg Am 1968; 50(8):1522-34.
4) DeCoster T, Willis M, Marsh J, Williams T, Nepola J, Dirschl D, et al. Rank order analysis of tibial plafond fractures: does injury or reduction predict outcome? Foot Ankle Int 1999; 20(1):44-9. doi: 10.1177/107110079902000110.
5) Casales N, Maquieira J. Sistematización de los abordajes en las fracturas del platillo tibial. Rev Méd Urug 2019; 35(2):138-46. doi: 10.29193/RMU.35.2.6.
6) Honkonen S. Indications for surgical treatment of tibial condyle fractures. Clin Orthop Relat Res 1994; (302):199-205.
7) Tscherne H, Lobenhoffer P. Tibial plateau fractures. Management and expected results. Clin Orthop Relat Res 1993; (292):87-100.
8) Page M, McKenzie J, Bossuyt P, Boitron I, Hoffmann T, Mulrow C, et al. Declaracion PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Rev Esp Cardiol 2021; 74(9):790-9. doi: 10.1016/j.recesp.2021.06.016.
9) Pernaa K, Koski I, Mattila K, Gullichsen E, Heikkila J, Aho A, et al. Bioactive glass S53P4 and autograft bone in treatment of depressed tibial plateau fractures - a prospective randomized 11-year follow-up. J Long Term Eff Med Implants 2011; 21(2):139-48. doi: 10.1615/jlongtermeffmedimplants.v21.i2.40.
10) Hofmann A, Gorbulev S, Guehring T, Schulz A, Schupfner R, Raschke M, et al. Autologous iliac bone graft compared with biphasic hydroxyapatite and calcium sulfate cement for the treatment of bone defects in tibial plateau fractures: a prospective, randomized, open-label, multicenter study. J Bone Joint Surg Am 2020; 102(3):179-93. doi: 10.2106/JBJS.19.00680.
11) Bucholz R, Carlton A, Holmes R. Interporous hydroxyapatite as a bone graft substitute in tibial plateau fractures. Clin Orthop Relat Res 1989; (240):53-62.
12) Simpson D, Keating J. Outcome of tibial plateau fractures managed with calcium phosphate cement. Injury 2004; 35(9):913-8. doi: 10.1016/S0020-1383(03)00109-8.
13) Schatzker J, McBroom R, Bruce D. The tibial plateau fracture. The Toronto experience 1968--1975. Clin Orthop Relat Res 1979; (138):94-104.
14) Bagherifard A, Ghandhari H, Jabalameli M, Rahbar M, Hadi H, Moayedfar M, et al. Autograft versus allograft reconstruction of acute tibial plateau fractures: a comparative study of complications and outcome. Eur J Orthop Surg Traumatol 2017; 27(5):665-71. doi: 10.1007/s00590-016-1863-y.
15) Rasmussen P. Tibial condylar fractures. Impairment of knee joint stability as an indication for surgical treatment. J Bone Joint Surg Am 1973; 55(7):1331-50.
16) Ong J, Kennedy M, Mitra A, Harty J. Fixation of tibial plateau fractures with synthetic bone graft versus natural bone graft: a comparison study. Ir J Med Sci 2012; 181(2):247-52. doi: 10.1007/s11845-011-0797-y.
17) Russell T, Leighton R. Comparison of autogenous bone graft and endothermic calcium phosphate cement for defect augmentation in tibial plateau fractures. A multicenter, prospective, randomized study. J Bone Joint Surg Am 2008; 90(10):2057-61. doi: 10.2106/JBJS.G.01191.
18) Heikkilä J, Kukkonen J, Aho A, Moisander S, Kyyrönen T, Mattila K. Bioactive glass granules: a suitable bone substitute material in the operative treatment of depressed lateral tibial plateau fractures: a prospective, randomized 1 year follow-up study. J Mater Sci Mater Med 2011; 22(4):1073-80. doi: 10.1007/s10856-011-4272-0.
19) Jónsson B, Mjöberg B. Porous titanium granules are better than autograft bone as a bone void filler in lateral tibial plateau fractures: a randomised trial. Bone Joint J 2015; 97-B(6):836-41. doi: 10.1302/0301-620X.97B6.34552.
20) Paradowski P, Bergman S, Sundén-Lundius A, Lohmander L, Roos E. Knee complaints vary with age and gender in the adult population. Population-based reference data for the Knee injury and Osteoarthritis Outcome Score (KOOS). BMC Musculoskelet Disord 2006; 7:38. doi: 10.1186/1471-2474-7-38.
21) Bellamy N, Buchanan W. A preliminary evaluation of the dimensionality and clinical importance of pain and disability in osteoarthritis of the hip and knee. Clin Rheumatol 1986; 5(2):231-41. doi: 10.1007/BF02032362.
22) Tegner Y, Lysholm J. Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res 1985; (198):43-9.
23) Chu W, Wang X, Gan Y, Zhuang Y, Shi D, Liu F, et al. Screen-enrich-combine circulating system to prepare MSC/β-TCP for bone repair in fractures with depressed tibial plateau. Regen Med 2019; 14(6):555-69. doi: 10.2217/rme-2018-0047.
24) Greenwald A, Boden S, Goldberg V, Khan Y, Laurencin C, Rosier R. Bone-graft substitutes: facts, fictions, and applications. J Bone Joint Surg Am 2001; 83-A(Suppl 2 Pt 2):98-103. doi: 10.2106/00004623-200100022-00007.
25) Arrington E, Smith W, Chambers H, Bucknell A, Davino N. Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res 1996; (329):300-9. doi: 10.1097/00003086-199608000-00037.
26) Palmer W, Crawford-Sykes A, Rose R. Donor site morbidity following iliac crest bone graft. West Indian Med J 2008; 57(5):490-2.
27) Goff T, Kanakaris N, Giannoudis P. Use of bone graft substitutes in the management of tibial plateau fractures. Injury 2013; 44(Suppl 1):S86-94. doi: 10.1016/S0020-1383(13)70019-6.
28) Beaman F, Bancroft L, Peterson J, Kransdorf M. Bone graft materials and synthetic substitutes. Radiol Clin North Am 2006; 44(3):451-61. doi: 10.1016/j.rcl.2006.01.001.
29) De Long WJr, Einhorn T, Koval K, McKee M, Smith W, Sanders R, et al. Bone grafts and bone graft substitutes in orthopaedic trauma surgery: a critical analysis. J Bone Joint Surg Am 2007; 89(3):649-58. doi: 10.2106/JBJS.F.00465.