Impacto clínico de la tomografía de emisión por positrones (PET) en pacientes oncológicos y su potencial aplicación en el contexto sanitario y académico nacional

Autores/as

  • Omar Alonso Universidad de la República, Facultad de Medicina, Medicina Nuclear, Profesor Agregado

Palabras clave:

TOMOGRAFÍA POR EMISIÓN DE POSITRONES, FLUORODESOXIGLUCOSA F18, NEOPLASMAS

Resumen

La tomografía de emisión de positrones (PET) es una técnica de medicina nuclear que tiene la capacidad de detectar el cáncer por medio de mecanismos basados en las alteraciones moleculares de los procesos neoplásicos. En esta revisión se describen las aplicaciones oncológicas del PET y se analiza la potencial aplicación de esta tecnología en el contexto sanitario y académico nacional. El trazador más utilizado en oncología es un análogo de la glucosa marcado con flúor: 18F-2-flúor-2-desoxi-D-glucosa (FDG). De esta forma, el PET detecta la retención tumoral de FDG, debido al mayor índice glucolítico de las células cancerosas. Además, los tomógrafos PET permiten el estudio de todo el cuerpo en el mismo acto exploratorio y algunos equipos se encuentran acoplados a sistemas de tomografía axial computarizada (PET-TAC). Mediante PET-FDG es posible diagnosticar, estadificar y reestadificar la mayoría de los cánceres, con exactitudes diagnósticas cercanas a 90%, superior a los valores aportados por las técnicas imagenológicas convencionales. Además, es posible conocer precozmente la respuesta a los tratamientos oncológicos y obtener información pronóstica relevante.

Citas

1) Lomeña JF, Simó M. Indicaciones de la tomografía por emisión de positrones. Med Clin (Barc) 2003; 120: 742-9.
2) Intercollegiate Standing Committee on Nuclear Medicine. Positron emission tomography: a strategy for provision in the UK. A report of the Intercollegiate Standing Committee on Nuclear Medicine. London: Royal College of Physicians of London, 2003: 69 p. Obtenido de: www.rcplondon.ac.uk/pubs/wp_pet.pdf (Consultado: 22 abr 2006).
3) Lenzo N. The Australian government’s review of positron emission tomography: evidence-based policy decision-making in action. Med J Aust 2004; 181: 516-7.
4) Saha GB, MacIntyre WJ, Go RT. Cyclotrons and positron emission tomography radiopharmaceuticals for clinical imaging. Semin Nucl Med 1992; 22: 150-61.
5) Ho CL. Clinical PET imaging - an Asian perspective. Ann Acad Med Singapore 2004; 33: 155-65.
6) Suárez JP, Maldonado A, Domínguez ML, Serna JA, Kostvinseva O, Ordovás A, et al. La tomografía por emisión de positrones (PET) en la práctica clínica oncológica. Oncología (Barc) 2004; 27: 479-89.
7) Schillaci O, Simonetti, G. Fusion imaging in nuclear medicine-applications of dual-modality systems in oncology. Cancer Biother Radiopharm 2004; 19: 1-10.
8) Schrevens L, Lorent N, Dooms C, Vansteenkiste J. The role of PET scan in diagnosis, staging and management of non-small cell lung cancer. Oncologist 2004; 9: 633-43.
9) Ruiz G, Romero C, Carreras JL. Valor de la tomográfica por emisión de positrones mediante 18F-fluoro-2-desoxi-D-glucosa (PET-FDG) en el diagnóstico de las neoplasias. Med Clin (Barc) 2005; 124: 229-36.
10) Gould MK, Sanders GD, Barnett PG, Rydzak CE, Maclean CC, McClellan. MB, et al. Cost-effectiveness of alternative management strategies for patients with solitary pulmonary nodules. Ann Intern Med 2003;138: 724-35.
11) Zimny M, Schumpelick V. Fluorodeoxyglucose positron emission tomography (FDG-PET) in the differential diagnosis of pancreatic lesions. Chirurg 2001;72: 989-94.
12) Papos M, Takacs T, Tron L, Farkas G, Ambrus E, Szakall S, et al. The possible role of F-18 FDG positron emission tomography in the differential diagnosis of focal pancreatic lesions. Clin Nucl Med 2002; 27: 197-201.
13) Diederichs CG, Staib L, Vogel J, Glasbrenner B, Glatting G, Brambs HJ, et al. Values and limitations of 18F-fluorodeoxyglucose-positron-emission tomography with preoperative evaluation of patients with pancreatic masses. Pancreas 2000; 20: 109-16.
14) Sperti C, Pasquali C, Decet G, Chierichetti F, Liessi G, Pedrazzoli S. F-18-fluorodeoxyglucose positron emission tomography in differentiating malignant form benign pancreatic cysts: a prospective study. J Gastrointest Surg 2005; 9: 22-8.
15) Hienrich S, Goerres GW, Schafer M, Sagmeister M, Bauerfeind P, Pestalozzi BC, et al. Positron emission tomography/computed tomography influences on the management of respectable pancreatic cancer and its cost-effectiveness. Ann Surg 2005; 242: 235-43.
16) Jana S, Zhang T, Milstein DM, Isasi CR, Blaufox MD. FDG-PET and CT characterization of adrenal lesions in cancer patients. Eur J Nucl Med Mol Imaging 2006; 33: 29-35.
17) Metser U, Miller E, Lerman H, Lievhitz G, Avital S, Even-Sapir E. 18F-FDG PET/CT in the Evaluation of Adrenal Masses. J Nucl Med 2006; 47: 32-7.
18) Scott CL, Kudaba I, Stewart JM, Hicks RJ, Rischin D. The utility of 2-deoxy-2-[F-18] fluoro-D-glucose positron emission tomography in the investigation of patients with disseminated carcinoma of unknown primary origin. Mol Imaging Biol 2005; 7: 236-43.
19) Miller FR, Hussey D, Beeram M, Eng T, McGuff HS, Otto RA. Positron emission tomography in the management of unknown primary head and neck carcinoma. Arch Otolaryn-gol Head Neck Surg 2005; 131: 626-9.
20) Gutzeit A, Antoch G, Kuhl H, Egelhof T, Fischer M, Hauth E, et al. Unknown primary tumors: detection with dual-modality PET/CT-initial experience. Radiology 2005; 234: 227-34.
21) Nanni C, Rubello D, Castelucci P, Farsad M, Franchi R, Toso S, et al. Role of 18F-FDG PET-CT imaging for the detection of an unknown primary tumour: preliminary results in 21 patients. Eur J Nucl Med Mol Imaging 2005; 32: 589-92.
22) Toloza EM, Harpole L, McCrory DC. Noninvasive staging of non-small cell lung cancer: a review of the current evidence. Chest 2003; 123(Suppl 1): 137S-146S.
23) Verhagen AF, Bootsma GP, Tjan-Heinjnen VC, van der Wilt GJ, Cox AL, Brouwer MH, et al. FDG-PET in staging lung cancer: how does it change the algorithm?. Lung Cancer 2004; 44: 175-81.
24) Brink I, Schumacher T, Mix M, Ruhland S, Stoelben E, Digel W, et al. Impact of [18F]FDG-PET on the primary staging of small-cell lung cancer. Eur J Nucl Med Mol Imaging 2004; 31: 1614-20.
25) Israel O, Keidar Z, Bar-Shalom R. Positron emission tomography in the evaluation of lymphoma. Semin Nucl Med 2004; 34: 166-79.
26) Meyer RM, Ambinder RF, Stroobants S. Hodgkin’s lymphoma: evolving concepts with implications for practice. Hematology Am Soc Hematol Educ Program 2004; 184-202.
27) Isasi CR, Lu P, Blaufox MD. A metaanalysis of 18F-2-deoxy-2-fluoro-D-glucose positron emission tomography in the staging and restaging of patients with lymphoma. Cancer 2005; 104: 1066-74.
28) Stumpe KD, Urbinelli M, Steinert HC, Glanzmann C, Buck A, von Schulthess GK. Whole-body positron emission tomography using fluorodeoxyglucose for staging of lymphoma: effectiveness and comparison with computed tomography. Eur J Nucl Med 1998; 25: 721-8.
29) Freudenberg LS, Antoch G, Schutt P, Beyer T, Jentzen W, Muller SP, et al. FDG-PET/CT in re-staging of patients with lymphoma. Eur J Nucl Med Mol Imaging 2004; 31: 325-9.
30) Ruiz-Hernández G, Carreras Delgado JL, García Conde J. Tomografía por emisión de positrones en pacientes con linfoma: perspectivas futuras. Hematología 2003; 6: 133-48.
31) Kumar R, Alavi A. Clinical applications of fluorodeoxy-glucose-positron emission tomography in the management of malignant melanoma. Curr Opin Oncol 2005; 17: 154-9.
32) Schwimmer J, Essner R, Patel A, Jahan SA, Shepherd JE, Park K, et al. A review of the literature for whole-body FDG PET in the management of patients with melanoma. Q J Nucl Med 2000; 44: 153-67.
33) Klein M, Freedman N, Lotem M, Marciano R, Moshe S, Gimon Z, et al. Contribution of whole body F-18-FDG-PET and lymphoscintigraphy to the assessment of regional and distant metastases in cutaneous malignant melanoma: A pilot study. Nuklearmedizin 2000; 39: 56-61.
34) Friedman KP, Wahl RL. Clinical use of positron emission tomography in the management of cutaneous melanoma. Semin Nucl Med 2004; 34: 242-53.
35) Muylle K, Castaigne C, Flamen P. 18-F-fluoro-2-deoxy-D-glucose positron emission tomographic imaging: recent developments in head and neck cancer. Curr Opin Oncol 2005; 17: 249-53.
36) Kovacs AF, Dobert N, Gaa J, Menzel C, Bitter K. Positron emission tomography in combination with sentinel node biopsy reduces the rate of elective neck dissections in the treatment of oral and oropharyngeal cancer. J Clin Oncol 2004; 22: 3973-80.
37) Schoder H, Yeung HW. Positron emission imaging of head and neck cancer, including thyroid carcinoma. Semin Nucl Med 2004; 34: 180-97.
38) Rasanen JV, Sihvo EI, Knuuti MJ, Minn HR, Luostarinen ME, Laippala P, et al. Prospective analysis of accuracy of positron emission tomography, computed tomography, and endoscopic ultrasonography in staging of adenocarcinoma of the esophagus and the esophagogastric junction. Ann Surg Oncol 2003; 10: 954-60.
39) Hustinx R. PET imaging in assessing gastrointestinal tumors. Radiol Clin North Am 2004; 42: 1123-39.
40) Larson SM, Schoder H, Yeung H. Positron emission tomography/computerized tomography functional imaging of esophageal and colorectal cancer. Cancer J. 2004; 10: 243-50.
41) Choi JY, Lee KH, Shim YM, Lee KS, Kim JJ, Kim SE, et al. Improved detection of individual nodal involvement in squamous cell carcinoma of the esophagus by FDG PET. J Nucl Med 2000; 41: 808-15.
42) Heriot AG, Hicks RJ, Drummond EG, Keck J, Mackay J, Chen F, et al. Does positron emission tomography change management in primary rectal cancer?: A prospective assessment. Dis Colon Rectum 2004; 47: 451-8.
43) Wiering B, Krabbe PF, Jager GJ, Oyen WJ, Ruers TJ. The impact of fluor-18-deoxyglucose-positron emission tomography in the management of colorectal liver metastases. Cancer 2005; 104: 2658-70.
44) Fuster D, Chiang S, Johnson G, Schuchter LM, Zhuang H, Alavi A. Is 18F-FDG PET more accurate than standard diagnostic procedures in the detection of suspected recurrent melanoma?. J Nucl Med 2004; 45: 1323-7.
45) Schmidt M, Schmalenbach M, Jungehulsing M, Theissen P, Dietlein M, Schroder U, et al. 18F-FDG PET for detecting recurrent head and neck cancer, local lymph node involvement and distant metastases: Comparison of qualitative visual and semiquantitative analysis. Nuklearmedizin 2004; 43: 91-101.
46) Ruiz Franco-Baux JV, Borrego Dorado I, Gómez Camarero P, Rodríguez Rodríguez JR, Vázquez Albertino RJ, Navarro González E, et al. F-18-fluordeoxy-glucose positron emission tomography on patients with differentiated thyroid cancer who present elevated human serum thyroglobulin levels and negative I-131 whole body scan. Rev Esp Med Nucl 2005; 24: 5-13.
47) Palmedo H, Bucerius J, Joe A, Strunk H, Hortling N, Meyka S, et al. Integrated PET/CT in differentiated thyroid cancer: diagnostic accuracy and impact on patient management. J Nucl Med 2006; 47: 616-24.
48) Khan N, Oriuchi N, Higuchi T, Endo K. Review of fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) in the follow-up of medullary and anaplastic thyroid carcinomas. Cancer Control 2005; 12: 254-60.
49) Isasi CR, Moadel RM, Blaufox MD. A meta-analysis of FDG-PET for the evaluation of breast cancer recurrence and metastases. Breast Cancer Res Treat 2005; 90: 105-12.
50) Weir L, Worsley D, Bernstein V. The value of FDG positron emission tomography in the management of patients with breast cancer. Breast J 2005; 11: 204-9.
51) Van Oost FJ, Van Der Hoeven JJ, Hoekstra OS, Voogd AC, Coebergh JW, Van De Poll-Franse LV. Staging in patients with locoregionally recurrent breast cancer: current practice and prospects for positron emission tomography. Eur J Cancer 2004; 40: 1545-53.
52) Grahek D, Montravers F, Kerrou K, Aide N, Lotz JP, Talbot JN. 18 F FDG in recurrent breast cancer: diagnostic performances, clinical impact and relevance of induced changes in management. Eur J Nucl Med Mol Imaging 2004; 31: 179-88.
53) Suárez M, Pérez-Castejon MJ, Jiménez A, Domper M, Ruiz G, Montz R, et al. Early diagnosis of recurrent breast cancer with FDG-PET in patients with progressive elevation of serum tumor markers. Q J Nucl Med 2002; 46: 113-21.
54) García Velloso MJ, Boán García JF, Villar Luque LM, Aramendia Beitia JM, López García G, Richter Echeverría JA. Tomografía por emisión de positrones con F-18-FDG en el diagnóstico de recurrencia del cáncer de ovario: Comparación con TAC y CA 125. Rev Esp Med Nucl 2003; 22: 217-23.
55) Murakami M, Miyamoto T, Iida T, Tsukada H, Watanabe W, Shida M, et al. Whole-body positron emission tomography and tumor marker CA125 for detection of recurrence in epithelial ovarian cancer. Int J Gynecol Cancer 2006; 16(Suppl 1): 99-107.
56) Juweid ME, Cheson BD. Positron-emission tomography and assessment of cancer therapy. N Engl J Med 2006; 354: 496-507.
57) Quek ML, Simma-Chiang V, Stein JP, Pinski J, Quinn DI, Skinner DG. Postchemotherapy residual masses in advanced seminoma; current management and outcomes. Expert Rev Anticancer Ther 2005; 5: 869-74.
58) Becherer A, De Santis M, Karanikas G, Szabo M, Bokemeyer C, Dohmen BM, et al. FDG PET is superior to CT in the prediction of viable tumour in post-chemotherapy seminoma residuals. Eur J Radiol 2005; 54: 284-8.
59) Messa C, Bettinardi V, Picchio M, Pelosi E, Landoni C, Gianolli L, et al. PET/CT in diagnostic oncology. Q J Nucl Med Mol Imaging 2004; 48: 66-75.
60) Coleman RE, Delbeke D, Guiberteau MJ, Conti PS, Royal HD, Weinreb JC, et al. Concurrent PET/CT with an integrated imaging system: intersociety dialogue from the joint working group of the American College of Radiology, the Society of Nuclear Medicine, and the Society of Computed Body Tomography and Magnetic Resonance. J Nucl Med 2005; 46: 1225-39.
61) Messa C, Di Muzio N, Picchio M, Gilardi MC, Bettinardi V, Fazio F. PET/CT and radiotherapy. Q J Nucl Med Mol Imaging 2006; 50: 4-14.
62) Ell PJ. The contribution of PET/CT to improved patient management. Br J Radiol 2006; 79: 32-6.
63) Guerrero Pupo JC, Amell Muñoz I, Cañedo Andalia R. Tecnología, tecnología médica y tecnología de la salud: algunas consideraciones básicas. Acimed 2004; 12(4). Obtenido en: http://scielo.sld.cu/scielo.php?pid=1024-943520040004& script=sci_issuetoc (Consultado: 22 abr 2006).
64) González P, Massardo T, Canessa J, Humeres P, Jofre MJ. Clinical application of positron emission tomography (PET). Rev Med Chile 2002; 130 (5): 569-79. Obtenido de: http://www.scielo.cl/scielo.php?pid=0034-988720020005& script=sci_issuetoc (Consultado: 22 abr 2006).

Descargas

Publicado

2006-09-30

Cómo citar

1.
Alonso O. Impacto clínico de la tomografía de emisión por positrones (PET) en pacientes oncológicos y su potencial aplicación en el contexto sanitario y académico nacional. Rev. Méd. Urug. [Internet]. 30 de septiembre de 2006 [citado 15 de enero de 2025];22(3):169-78. Disponible en: https://revista.rmu.org.uy/index.php/rmu/article/view/687

Número

Sección

Artículos originales

Artículos más leídos del mismo autor/a