Nutrigenética y nutrigenómica

La revolución sanitaria del nuevo milenio. Implicancias clínicas en síndrome metabólico y diabetes tipo 2

  • Raúl Pisabarro Universidad de la República, Facultad de Medicina, Endocrinología y Metabolismo, Profesor Agregado


El creciente conocimiento de la interacción gene-nutriente revolucionará el manejo de las grandes epidemias sanitarias del siglo XXI: obesidad, síndrome metabólico y diabetes 2, cuyo piso común es el aumento de enfermedad cardiovascular y cáncer.
Hoy día, mediante la nutrigenética es posible prevenir o mejorar el manejo de estas enfermedades.
Esta nueva área en nutrición molecular puede dividirse en el accionar de ciertos nutrientes sobre la regulación de la expresión genética: nutrigenómica, y la repuesta de la estructura genética particular del individuo a ciertos nutrientes: nutrigenética.
En la presente revisión nos concentraremos en desarrollar algunos avances importantes de utilidad clínica alcanzados por la nutrigenética y nutrigenómica durante los últimos años. Particularmente la interacción gene-nutriente conferida por los ácidos grasos de la dieta. Interacción trascendente en la génesis de las epidemias sanitarias del nuevo milenio. Expondremos trabajos y líneas de investigación propios con enfoque clínico práctico.


1) Segal S, Berry GT. Disorders of galactose metabolism. In: Scriver CR, Beaudet Al, Sly WS, Valle D, eds. The metabolic and molecular bases of inherited disease. 7 ed. New York: MacGraw-Hill, 1995: 967-1000.
2) Scriver CR, Kaufman S, Eisenmith RC, Woo SLC. The hyperphenylalaninemias. In: Scriver CR, Beaudet Al, Sly WS, Valle D, eds. The metabolic and molecular bases of inherited disease. 7 ed. New York: MacGraw-Hill, 1995: 1015-76.
3) American Institute for Cancer Research. World Cancer Research Fund. Food, nutrition and the prevention of cancer: a global perspective. Washington American Institute for Cancer Research, 1997.
4) Kellof GJ, Crowell JA, Steele VE, Luber RA, Malone WA, Bone CW, et al. Progress in cancer chemoprevention: development of diet-related progress chemopreventive agents. J Nutr 2000; 130 (2S Suppl): 467S-471S.
5) Elliott R, Ong TJ. Nutritional genomics. BJM 2002; 324(7351): 1438-42.
6) Pisabarro RE, Sanguinetti C, Stoll M, Prendez D. High incidence of type 2 diabetes in peroxisome proliferator-activated receptor gamma2 Pro12Ala carriers exposed to a high chronic intake of trans fatty acids and saturated fatty acids. Diabetes Care 2004; 27(9): 2251-2.
7) Lovejoy JC, Smith SR, Champagne CM, Most MM, Lefevre M, De-Lany JP, et al. Effects of diets enriched in saturated (palmitic), monounsaturated (oleic), or trans (elaidic) fatty acids on insulin sensitivity and substrate oxidation in healthy adults. Diabetes Care 2002; 25(8): 1283-8.
8) Grundy SM, Abate N, Chandalia M. Diet composition and the metabolic syndrome: what is the optimal fat intake?. Am J Med 2002; 113 (Suppl 9B): 25S-29S.
9) Fernández-Real JM, Broch M, Vendrell J, Ricart W. Insulin resistance, inflammation, and serum fatty acid composition. Diabetes Care 2003; 26(5): 1362-8.
10) Shaefer EJ. Lipoprotein, nutrition, and heart disease. Am J Clin Nutr 2000; 75: 191-212.
11) McGarry JD. Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 2002; 51(1): 7-18.
12) Slattery ML, Potter JD, Duncan D, Berry TD. Dietary fats and colon cancer: assessment of risk associated with specific fatty acids. Int J Cancer 1997; 73: 670-7.
13) Blundell-Green SM, Wales JK, Lawton CL, Blundell JE. Comparison of high-fat and high-carbohydrate foods in a meal or snack on short-term fat and energy intakes in obese women. Br J Nutr 2000; 84(4): 521-30.
14) Blundell JE, MacDiarmid JI. Fat as a risk factor for overconsumption: satiation, satiety, and patterns of eating. J Am Diet Assoc 1997; 97 (7 Suppl): S63-9.
15) Harte RA, Kirk EA, Rosenfeld ME, LeBoeuf RC. Initiation of hyperinsulinemia and hyperleptinemia is diet dependent in C57BL/6 mice. Horm Metab Res 1999; 31(10): 570.
16) Greco A, Borkman M, Storlien LH, Pan DA, Jenkins AB, Chisholm DJ, Campbell LV. The relation between insulin sensitivity and the fatty-acid composition of skeletal muscle phospholipids. N Engl J Med 1993; 328: 238-44.
17) Pan DA, Lillioja S, Kriketos AD, Milner MR, Baur LA, Bogardus C, et al. Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes 1997; 46: 983-8.
18) Phillips DI, Caddy S, Ilic V, Fielding BA, Frayn KN, Borthwick AC, Taylor R. Intramuscular triglyceride and muscle insulin sensitivity: evidence for a relationship in nondiabetic subjects. Metabolism 1996; 45: 947-50.
19) Manco M, Mingrone G, Greco AV, Capristo E, Gniuli D, De Gaetano A, et al. Insulin resistance directly correlates with increased saturated fatty acids in skeletal muscle triglycerides. Metabolism 2000; 49(2): 220-4.
20) Enríquez YR, Giri M, Rottiers R, Christophe A. Fatty acid composition of erythrocyte phospholipids is related to insulin levels, secretion and resistance in obese type 2 diabetics on Metformin. Clin Chim Acta 2004; 346(2): 145-52.
21) Vessby B, Unsitupa M, Hermansen K, Riccardi G, Rivellese AA, Tapsell LC, et al. Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: The KANWU Study. Diabetologia 2001; 44(3): 312-9.
22) Lichestenstein AH, Ausman LM, Jalbert SM, Shaefer EJ. Effects of different forms of dietary hydrogenated fats and serum lipoprotein cholesterol levels. N Eng J Med 1999; 340: 1933-40.
23) Salmeron J, Hu FB, Manson JE, Stampfer MJ. Colditz GA, Rimm EB, et al. Dietary fat intake and risk of type 2 Diabetes in women. Am J Clin Nutr 2001; 73: 1019-26.
24) Dresner A, Laurent D, Marcucci M, Griffin ME, Dufour S, Cline GW, et al. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest 1999; 103: 253-9.
25) Greco AV, Mingrone G, Giancaterini A, Manco M, Morroni M, Cinti S, et al. Insulin resistance in morbid obesity: Reversal with intramyocellular fat depletion. Diabetes 2002; 51(1): 144-51.
26) Roden M, Price TB, Perseghin G, Petersen KF, Rothman DL, Cline GW, et al. Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest 1996; 97: 2859-65.
27) Massillon D, Barzilai N, Hawkins M, Prus-Wertheimer D, Rossetti L. Induction of hepatic glucose-6-phosphatase gene expression by lipid infusion. Diabetes 1997; 46: 153-7.
28) Clarke SD. Polyunsaturated fatty acids regulation of gene transcription: a molecular mechanism to improve de metabolic syndrome J Nutr 2001; 131: 1129-32.
29) Swinburn BA, Metcalf PA, Ley SJ. Long-Term (5-year) effect of a reduced fat diet intervention in individuals with glucose intolerance. Diabetes Care 2001; 24: 619-24.
30) Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Eng J Med 2001; 344(18): 1343-50.
31) Meyer K, Kushi L, Jacobs DR, Folson AR. Dietary fat and incidence of type 2 diabetes in older Iowa women. Diabetes Care 2001; 24(9): 1528-35.
32) Unger RH, Zhou YT, Orci L. Regulations of fatty homeostasis in cells: Novel rol of leptin. Proc Natl Acad Sci 1999; 96: 23-7.
33) Baur LA, O’Connor J, Pan DA, Kritketos AD, Storlien LH. The fatty acid composition of skeletal muscle membrane phospholipid its relationship with the type of feeding and plasma glucose levels in young children. Metabolism 1998; 47: 106-12.
34) Duplus E, Giorian M, Forest C. Fatty acid regulation on gene transcription. J Biol Chem. 2000; 275: 30740-52.
35) Clarke SD. Polyunsaturated fatty acids regulation of gene transcription: a mechanism to improve energy balance and insulin resistance. Br J Nutr 2000; 83 (Suppl 1): S59-S66.
36) Jump DB, Clarke SD. Regulation of gene expression by dietary fat. Annu Rev Nutr 1999; 19: 63-90.
37) Nakamura MT, Cho HP, Clarke SD. Regulation of delta-6 desaturase expression and its role in the polyunsaturated fatty acids inhibition of fatty acid synthase gene expression in mice. J Nutr 2000; 130: 1561-5.
38) Hu FB, Stampfer MJ, Manson JE, Rimm EB, Wolk A, Colditz GA, et al. Dietary intake of alpha-linolenic acid and risk of fatal ischemic heart disease among women. Am J Clin Nutr 1999; 69(5): 890-7.
39) Moris TA, Bao DQ, Burke V, Pudey IB, Watts GF, Beilin LJ. Dietary fish as a major component of a weight-loss diet: effect on serum lipids, glucose, and insulin metabolism in overweight hypertensive subjects. Am J Clin Nutr 1999; 70: 817-25.
40) Matsui H, Okumura K, Kawakami K, Hibino M, Toki Y, Ito T. Improve insulin sensitivity by bezafibrate in rats: relationships to fatty acid composition of skeletal muscle triglycerides. Diabetes 1997; 46: 348-53.
41) Ren B, Thelen AP, Peters JM, González F, Jump DB. Polyunsaturated fatty acids suppression of hepatic fatty synthase and S14 gene expression does not require peroxisome proliferators-activated receptor alpha. J Biol Chem 1997; 272(43): 26827-32.
42) Juhl CB, Hollingdal M, Porksen N, Prange A, Lonnqvist F, Schmitz O. Influence of rosiglitazone treatment on beta-cell function in type 2 diabetes: evidence of an increased ability of glucose to entrain high-frequency insulin pulsatility. J Clin Endocrinol Metab 2003; 88(8): 3794-800.
43) Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, Vohl M-C, Nemesh J, et al. The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 2000; 26: 76-80.
44) Mancini FP, Vaccaro O, Sabatino L, Tufano A, Rivellese AA, Riccardi G, et al. Pro12Ala substitution in the peroxisome proliferator–activated receptor-g2 is not associated with type 2 diabetes. Diabetes 1999; 48: 1466-8.
45) Hegele RA, Cao H, Harris SB, Zinman B, Hanley AJ, Anderson CM. Peroxisome proliferator-activated receptor-gamma2 P12A and type 2 diabetes in Canadian Oji-Cree. J Clin Endocrinol Metab 2000; 85: 2014-9.
Cómo citar
Pisabarro R. Nutrigenética y nutrigenómica. Rev. Méd. Urug. [Internet]. 31 de mayo de 2006 [citado 28 de septiembre de 2022];22(2):100-7. Disponible en:
Trabajos de Revisión o Actualización y Puestas al día