Trasplante de células miogénicas

Medicina regenerativa en patologías del músculo esquelético y cardíaco

  • Daniel Skuk Universidad Laval, Quebec, Canadá. Facultad de Medicina, Departamento de Anatomía y Fisiología, Profesor Asociado


El trasplante de células con capacidad miogénica es una estrategia experimental de medicina regenerativa. Explorada en sus comienzos como una herramienta terapéutica en el manejo de miopatías, su extrapolación al tratamiento potencial del infarto de miocardio cobra hoy mayor expansión. El presente trabajo, basado en la bibliografía y en la experiencia del autor durante más de una década dedicada a la investigación clínica y preclínica en ese terreno, pretende realizar una breve puesta al día de un tema que puede cobrar gran importancia en la medicina del presente siglo.


(1) Skuk D. Myoblast transplantation for inherited myopathies: a clinical approach. Expert Opin Biol Ther 2004; 4(12): 1871-85.
(2) Skuk D, Tremblay JP. Cell therapies for inherited myopathies. Curr Opin Rheumatol 2003; 15(6): 723-9.
(3) Vilquin JT, Marolleau JP, Hagege A, Menasche P, Fiszman M, Schwartz K. Cell transplantation for post-ischemic heart failure. Arch Mal Coeur Vaiss 2002; 95(12): 1219-25.
(4) Skuk D, Tremblay JP. Progress in myoblast transplantation: a potential treatment of dystrophies. Microsc Res Tech 2000; 48(3-4): 213-22.
(5) Carr LK, Steele D, Steele S, Wagner D, Pruchnic R, Jankowski R, et al. 1-year follow-up of autologous muscle-derived stem cell injection pilot study to treat stress urinary incontinence. Int Urogynecol J Pelvic Floor Dysfunct 2008; 19(6): 881-3.
(6) Partridge TA, Grounds M, Sloper JC. Evidence of fusion between host and donor myoblasts in skeletal muscle grafts. Nature 1978; 273(5660): 306-8.
(7) Skuk D, Goulet M, Roy B, Chapdelaine P, Bouchard JP, Roy R, et al. Dystrophin expression in muscles of Duchenne muscular dystrophy patients after high-density injections of normal myogenic cells. J Neuropathol Exp Neurol 2006; 65(4): 371-86.
(8) Skuk D, Goulet M, Roy B, Piette V, Côté CH, Chapdelaine P, et al. First test of a "high-density injection" protocol for myogenic cell transplantation throughout large volumes of muscles in a Duchenne muscular dystrophy patient: eighteen months follow-up. Neuromuscul Disord 2007; 17(1): 38-46.
(9) Skuk D, Roy B, Goulet M, Chapdelaine P, Bouchard JP, Roy R, et al. Dystrophin expression in myofibers of Duchenne muscular dystrophy patients following intramuscular injections of normal myogenic cells. Mol Ther 2004; 9(3): 475-82.
(10) Wernig A, Irintchev A, Lange G. Functional effects of myoblast implantation into histoincompatible mice with or without immunosuppression. J Physiol 1995; 484(Pt 2): 493-504.
(11) Alameddine HS, Louboutin JP, Dehaupas M, Sébille A, Fardeau M. Functional recovery induced by satellite cell grafts in irreversibly injured muscles. Cell Transplant 1994; 3(1): 3-14.
(12) Yokoyama T, Huard J, Chancellor MB. Myoblast therapy for stress urinary incontinence and bladder dysfunction. World J Urol 2000; 18(1): 56-61.
(13) Heslop L, Beauchamp JR, Tajbakhsh S, Buckingham ME, Partridge TA, Zammit PS. Transplanted primary neonatal myoblasts can give rise to functional satellite cells as identified using the Myf5(nlacZl+) mouse. Gene Ther 2001; 8(10): 778-83.
(14) Ehrhardt J, Brimah K, Adkin C, Partridge T, Morgan J. Human muscle precursor cells give rise to functional satellite cells in vivo. Neuromuscul Disord 2007; 17(8): 631-8.
(15) Shinin V, Gayraud-Morel B, Gomes D, Tajbakhsh S. Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells. Nat Cell Biol 2006; 8(7): 677-87.
(16) Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, et al. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 2005; 122(2): 289-301.
(17) Grigoriadis AE, Heersche JN, Aubin JE. Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: effect of dexamethasone. J Cell Biol 1988; 106(6): 2139-51.
(18) Wakitani S, Saito T, Caplan AI. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 1995; 18(12): 1417-26.
(19) Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 1998; 279(5356): 1528-30.
(20) Gussoni E, Soneoka Y, Strickland CD, Buzney EA, Khan MK, Flint AF, et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 1999; 401(6751): 390-4.
(21) Ferrari G, Stornaiuolo A, Mavilio F. Failure to correct murine muscular dystrophy. Nature 2001; 411(6841):1014-5.
(22) Dell’Agnola C, Wang Z, Storb R, Tapscott SJ, Kuhr CS, Hauschka SD, et al. Hematopoietic stem cell transplantation does not restore dystrophin expression in Duchenne muscular dystrophy dogs. Blood 2004; 104(13): 4311-8.
(23) Gussoni E, Bennett RR, Muskiewicz KR, Meyerrose T, Nolta JA, Gilgoff I, et al. Long-term persistence of donor nuclei in a Duchenne muscular dystrophy patient receiving bone marrow transplantation. J Clin Invest 2002; 110(6): 807-14.
(24) Camargo FD, Green R, Capetenaki Y, Jackson KA, Goodell MA. Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates. Nat Med 2003; 9(12): 1520-7.
(25) Sampaolesi M, Blot S, D’Antona G, Granger N, Tonlorenzi R, Innocenzi A, et al. Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 2006; 444(7119): 574-9.
(26) Sampaolesi M, Torrente Y, Innocenzi A, Tonlorenzi R, D’Antona G, Pellegrino MA, et al. Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 2003; 301(5632): 487-92.
(27) Grounds MD, Davies KE. The allure of stem cell therapy for muscular dystrophy. Neuromuscul Disord 2007; 17(3): 206-8.
(28) Skuk D, Roy B, Goulet M, Tremblay JP. Successful myoblast transplantation in primates depends on appropriate cell delivery and induction of regeneration in the host muscle. Exp Neurol 1999; 155(1): 22-30.
(29) Skuk D, Goulet M, Roy B, Tremblay JP. Efficacy of myoblast transplantation in nonhuman primates following simple intramuscular cell injections: toward defining strategies applicable to humans. Exp Neurol 2002; 175(1): 112-26.
(30) Skuk D, Goulet M, Roy B, Tremblay JP. Myoblast transplantation in whole muscle of nonhuman primates. J Neuropathol Exp Neurol 2000; 59(3): 197-206.
(31) Kinoshita I, Vilquin JT, Guérette B, Asselin I, Roy R, Tremblay JP. Very efficient myoblast allotransplantation in mice under FK506 immunosuppression. Muscle Nerve 1994; 17(12): 1407-15.
(32) Morgan JE, Hoffman EP, Partridge TA. Normal myogenic cells from newborn mice restore normal histology to degenerating muscles of the mdx mouse. J Cell Biol 1990; 111(6 Pt 1): 2437-49.
(33) El Fahime E, Mills P, Lafreniere JF, Torrente Y, Tremblay JP. The urokinase plasminogen activator: an interesting way to improve myoblast migration following their transplantation. Exp Cell Res 2002; 280(2): 169-78.
(34) Lafreniere JF, Caron MC, Skuk D, Goulet M, Cheikh AR, Tremblay JP. Growth factor coinjection improves the migration potential of monkey myogenic precursors without affecting cell transplantation success. Cell Transplant 2009; 18(7):719-30.
(35) Skuk D, Goulet M, Tremblay JP. Use of repeating dispensers to increase the efficiency of the intramuscular myogenic cell injection procedure. Cell Transplant 2006; 15(7): 659-63.
(36) Richard PL, Gosselin C, Goulet M, Paradis M, Tremblay JP, Skuk D. A specific semi-manual device for rapid repetitive intramuscular cell implantation. Tissue Eng 2009; 15: 724.
(37) Skuk D, Tremblay JP. Myoblast transplantation. In: Atala A, Lanza R. Methods of tissue engineering. San Diego: Academic Press, 2001: 1083-98.
(38) Skuk D, Tremblay JP. "Engineering" myoblast transplantation. Graft 2001; 4: 558-70.
(39) Zvibel I, Smets F, Soriano H. Anoikis: roadblock to cell transplantation? Cell Transplant 2002; 11(7): 621-30.
(40) Skuk D, Caron NJ, Goulet M, Roy B, Tremblay JP. Resetting the problem of cell death following muscle-derived cell transplantation: detection, dynamics and mechanisms. J Neuropathol Exp Neurol 2003; 62(9): 951-67.
(41) Beauchamp JR, Morgan JE, Pagel CN, Partridge TA. Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source. J Cell Biol 1999; 144(6): 1113-22.
(42) Guérette B, Skuk D, Célestin F, Huard C, Tardif F, Asselin I, et al. Prevention by anti-LFA-1 of acute myoblast death following transplantation. J Immunol 1997; 159(5): 2522-31.
(43) Sammels LM, Bosio E, Fragall CT, Grounds MD, Van Rooijen N, Beilharz MW. Innate inflammatory cells are not responsible for early death of donor myoblasts after myoblast transfer therapy. Transplantation 2004; 77(12): 1790-7.
(44) Chazaud B, Sonnet C, Lafuste P, Bassez G, Rimaniol AC, Poron F, et al. Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth. J Cell Biol 2003; 163(5): 1133-43.
(45) Skuk D, Paradis M, Goulet M, Tremblay JP. Ischemic central necrosis in pockets of transplanted myoblasts in nonhuman primates: implications for cell-transplantation strategies. Transplantation 2007; 84(10): 1307-15.
(46) Karpati G, Ajdukovic D, Arnold D, Gledhill RB, Guttman R, Holland P, et al. Myoblast transfer in Duchenne muscular dystrophy. Ann Neurol 1993; 34(1): 8-17.
(47) Vilquin JT, Kinoshita I, Roy R, Tremblay JP. Cyclophosphamide immunosuppression does not permit successful myoblast allotransplantation in mouse. Neuromuscul Disord 1995; 5(6): 511-7.
(48) Irintchev A, Zweyer M, Wernig A. Cellular and molecular reactions in mouse muscles after myoblast implantation. J Neurocytol 1995; 24(4): 319-31.
(49) Hardiman O, Sklar RM, Brown RH Jr. Direct effects of cyclosporin A and cyclophosphamide on differentiation of normal human myoblasts in culture. Neurology 1993; 43(7): 1432-4.
(50) Hong F, Lee J, Song JW, Lee SJ, Ahn H, Cho JJ, et al. Cyclosporin A blocks muscle differentiation by inducing oxidative stress and inhibiting the peptidyl-prolyl-cis-trans isomerase activity of cyclophilin A: cyclophilin A protects myoblasts from cyclosporin A-induced cytotoxicity. Faseb J 2002; 16(12): 1633-5.
(51) Camirand G, Caron NJ, Asselin I, Tremblay JP. Combined immunosuppression of mycophenolate mofetil and FK506 for myoblast transplantation in mdx mice. Transplantation 2001; 72(1): 38-44.
(52) Camirand G, Stéphan L, Rousseau J, Sackett MK, Caron NJ, Mills P, et al. Central tolerance to myogenic cell transplants does not include muscle neoantigens. Transplantation 2008; 85(12): 1791-801.
(53) Gill RG, Wolf L. Immunobiology of cellular transplantation. Cell Transplant 1995; 4(4): 361-70.
(54) Wiendl H, Mitsdoerffer M, Hofmeister V, Wischhusen J, Weiss EH, Dichgans J, et al. The non-classical MHC molecule HLA-G protects human muscle cells from immune-mediated lysis: implications for myoblast transplantation and gene therapy. Brain 2003; 126(Pt 1): 176-85.
(55) Floyd SS Jr, Clemens PR, Ontell MR, Kochanek S, Day CS, Yang J, et al. Ex vivo gene transfer using adenovirus-mediated full-length dystrophin delivery to dystrophic muscles. Gene Ther 1998; 5(1): 19-30.
(56) Moisset PA, Skuk D, Asselin I, Goulet M, Roy B, Karpati G, et al. Successful transplantation of genetically corrected DMD myoblasts following ex vivo transduction with the dystrophin minigene. Biochem Biophys Res Commun 1998; 247(1): 94-9.
(57) Quenneville SP, Chapdelaine P, Skuk D, Paradis M, Goulet M, Rousseau J, et al. Autologous transplantation of muscle precursor cells modified with a lentivirus for muscular dystrophy: human cells and primate models. Mol Ther 2007; 15(2): 431-8.
(58) Ohtsuka Y, Udaka K, Yamashiro Y, Yagita H, Okumura K. Dystrophin acts as a transplantation rejection antigen in dystrophin- deficient mice: implication for gene therapy. J Immunol 1998; 160(9): 4635-40.
(59) Wernig A, Irintchev A, Hartling A, Stephan G, Zimmer-mann K, Starzinski-Powitz A. Formation of new muscle fibres and tumours after injection of cultured myogenic cells. J Neurocytol 1991; 20(12): 982-97.
(60) Skuk D, Furling D, Bouchard JP, Goulet M, Roy B, Lacroix Y, et al. Transplantation of human myoblasts in SCID mice as a potential muscular model for myotonic dystrophy. J Neuropathol Exp Neurol 1999; 58(9): 921-31.
(61) Soonpaa MH, Field LJ. Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ Res 1998; 83(1): 15-26.
(62) Beltrami AP, Urbanek K, Kajstura J, Yan SM, Finato N, Bussani R, et al. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 2001; 344(23): 1750-7.
(63) Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 2001; 107(11): 1395-402.
(64) Laflamme MA, Myerson D, Saffitz JE, Murry CE. Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts. Circ Res 2002; 90(6): 634-40.
(65) Quaini F, Urbanek K, Beltrami AP, Finato N, Beltrami CA, Nadal-Ginard B, et al. Chimerism of the transplanted heart. N Engl J Med 2002; 346(1): 5-15.
(66) Claycomb WC. Cardiac muscle cell proliferation and cell differentiation in vivo and in vitro. Adv Exp Med Biol 1983; 161: 249-65.
(67) Steinhelper ME, Lanson NA Jr, Dresdner KP, Delcarpio JB, Wit AL, Claycomb WC, et al. Proliferation in vivo and in culture of differentiated adult atrial cardiomyocytes from transgenic mice. Am J Physiol 1990; 259(6 Pt 2): H1826-34.
(68) Koh GY, Soonpaa MH, Klug MG, Field LJ. Long-term survival of AT-1 cardiomyocyte grafts in syngeneic myocardium. Am J Physiol 1993; 264(5 Pt 2): H1727-33.
(69) Koh GY, Soonpaa MH, Klug Mg, Pride HP, Cooper BJ, Zipes DP, et al. Stable fetal cardiomyocyte grafts in the hearts of dystrophic mice and dogs. J Clin Invest 1995; 96(4): 2034-42.
(70) Rubart M, Pasumarthi KB, Nakajima H, Soonpaa MH, Nakajima HO, Field LJ. Physiological coupling of donor and host cardiomyocytes after cellular transplantation. Circ Res 2003; 92(11): 1217-24.
(71) Li RK, Jia ZQ, Weisel RD, Mickle DA, Zhang J, Mohabeer MK, et al. Cardiomyocyte transplantation improves heart function. Ann Thorac Surg 1996; 62(3): 654-60.
(72) Sakakibara Y, Tambara K, Lu F, Nishina T, Nagaya N, Nishimura K, et al. Cardiomyocyte transplantation does not reverse cardiac remodeling in rats with chronic myocardial infarction. Ann Thorac Surg 2002; 74(1): 25-30.
(73) Kao RL, Rizzo C, Magovern GI. Satellite cell for myocardial regeneration. Physiologist 1989; 32: 220.
(74) Kao RL. Regeneration of injured myocardium from implanted satellite cells. Circulation 1991; (Suppl. II) 84: II-386.
(75) Reinecke H, Poppa V, Murry Ce. Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. J Mol Cell Cardiol 2002; 34(2): 241-9.
(76) Reinecke H, Minami E, Poppa V, Murry CE. Evidence for fusion between cardiac and skeletal muscle cells. Circ Res 2004; 94(6): e56-60.
(77) Taylor DA, Atkins BZ, Hungspreugs P, Jones TR, Reedy MC, Hutcheson KA, et al. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med 1998; 4(8): 929-33.
(78) Leobon B, Garcin I, Menasche P, Vilquin JT, Audinat E, Charpak S. Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. Proc Natl Acad Sci USA 2003; 100(13): 7808-11.
(79) Al Attar N, Carrion C, Ghostine S, Garcin I, Vilquin JT, Hagège AA, et al. Long-term (1 year) functional and histological results of autologous skeletal muscle cells transplantation in rat. Cardiovasc Res 2003; 58(1): 142-8.
(80) Murry CE, Wiseman RW, Schwartz SM, Hauschka SD. Skeletal myoblast transplantation for repair of myocardial necrosis. J Clin Invest 1996; 98(11):2512-23.
(81) Tambara K, Sakakibara Y, Sakaguchi G, Lu F, Premaratne GU, Lin X, et al. Transplanted skeletal myoblasts can fully replace the infarcted myocardium when they survive in the host in large numbers. Circulation 2003; 108(Suppl 1): II259-63.
(82) Pouzet B, Vilquin JT, Hagege AA, Scorsin M, Messas E, Fiszman M, et al. Intramyocardial transplantation of autologous myoblasts: can tissue processing be optimized? Circulation 2000; 102(19 Suppl 3): III210-5.
(83) Scorsin M, Hagège A, Vilquin JT, Fiszman M, Marotte F, Samuel JL, et al. Comparison of the effects of fetal cardiomyocyte and skeletal myoblast transplantation on postinfarction left ventricular function. J Thorac Cardiovasc Surg 2000; 119(6): 1169-75.
(84) Menasché P, Hagège AA, Scorsin M, Pouzet B, Desnos M, Duboc D, et al. Myoblast transplantation for heart failure. Lancet 2001; 357(9252): 279-80.
(85) Menasché P, Hagège AA, Vilquin JT, Desnos M, Abergel E, Pouzet B, et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 2003; 41(7): 1078-83.
(86) Gavira JJ, Herreros J, Pérez A, García-Velloso MJ, Barba J, Martin-Herrero F, et al. Autologous skeletal myoblast transplantation in patients with nonacute myocardial infarction: 1-year follow-up. J Thorac Cardiovasc Surg 2006; 131(4): 799-804.
(87) Siminiak T, Kalawki R, Fiszer D, Jerzykowska O, Rzezniczak J, Rozwadowska N, et al. Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury: phase I clinical study with 12 months of follow-up. Am Heart J 2004; 148(3): 531-7.
(88) Dib N, Michler RE, Pagani FD, Wright S, Kereiakes DJ, Lengerich R, et al. Safety and feasibility of autologous myoblast transplantation in patients with ischemic cardiomyopathy: four-year follow-up. Circulation 2005; 112(12): 1748-55.
(89) Hagège AA, Carrion C, Menasché P, Vilquin JT, Duboc D, Marolleau JP, et al. Viability and differentiation of autologous skeletal myoblast grafts in ischaemic cardiomyopathy. Lancet 2003; 361(9356): 491-2.
(90) Siminiak T, Burchardt P, Kurpisz M. Postinfarction heart failure: surgical and trans-coronary-venous transplantation of autologous myoblasts. Nat Clin Pract Cardiovasc Med 2006; 3(Suppl 1): S46-51.
(91) Biagini E, Valgimigli M, Smits PC, Poldermans D, Schinkel AF, Rizzello V, et al. Stress and tissue Doppler echocardiographic evidence of effectiveness of myoblast transplantation in patients with ischaemic heart failure. Eur J Heart Fail 2006; 8(6): 641-8.
(92) Ince H, Petzsch M, Rehders TC, Chatterjee T, Nienaber CA. Transcatheter transplantation of autologous skeletal myoblasts in postinfarction patients with severe left ventricular dysfunction. J Endovasc Ther 2004; 11(6): 695-704.
(93) Menasché P, Alfieri O, Janssens S, McKenna W, Reichenspurner H, Trinquart L, et al. The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 2008; 117(9): 1189-200.
(94) Menasché P. Stem cell therapy for heart failure: are arrhythmias a real safety concern? Circulation 2009; 119(20): 2735-40.
(95) Hierlihy AM, Seale P, Lobe CG, Rudnicki MA, Megeney LA. The post-natal heart contains a myocardial stem cell population. FEBS Lett 2002; 530(1-3): 239-43.
(96) Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003; 114(6): 763-76.
(97) Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V, Mishina Y, et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction Proc Natl Acad Sci USA 2003; 100(21): 12313-8.
(98) Laugwitz KL, Moretti A, Lam J, Gruber P, Chen Y, Woodard S, et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 2005; 433(7026): 647-53.
(99) Galvez BG, Sampaolesi M, Barbuti A, Crespi A, Covarello D, Brunelli S, et al. Cardiac mesoangioblasts are committed, self-renewable progenitors, associated with small vessels of juvenile mouse ventricle. Cell Death Differ 2008; 15(9): 1417-28.
(100) Leor J, Gerecht S, Cohen S, Miller L, Holbova R, Ziskind A, et al. Human embryonic stem cell transplantation to repair the infarcted myocardium. Heart 2007; 93(10):1278-84.
(101) Nussbaum J, Minami E, Laflamme MA, Virag JA, Ware CB, Masino A, et al. Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. Faseb J 2007; 21(7): 1345-57.
(102) Steel D, Hyllner J, Sartipy P. Cardiomyocytes derived from human embryonic stem cells - characteristics and utility for drug discovery. Curr Opin Drug Discov Devel 2009; 12(1): 133-40.
(103) Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 2007; 25(9): 1015-24.
(104) van Laake LW, Passier R, DoevendansPA, Mummery CL. Human embryonic stem cell-derived cardiomyocytes and cardiac repair in rodents. Circ Res 2008; 102(9): 1008-10.
(105) Kehat I, Khimovich L, Caspi O, Gepstein A, Shofti R, Arbel G, et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol 2004; 22(10): 1282-9.
(106) Ménard C, Hagège AA, Agbulut O, Barro M, Morichetti MC, Brasselet C, et al. Transplantation of cardiac-committed mouse embryonic stem cells to infarcted sheep myocardium: a preclinical study. Lancet 2005; 366(9490): 1005-12.
(107) Swijnenburg RJ, Tanaka M, Vogel H, Baker J, Kofidis T, Gunawan F, et al. Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation 2005; 112(9 Suppl): I166-72.
(108) Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 2007; 448(7151): 318-24.
(109) Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131(5): 861-72.
(110) Yuasa S, Fukuda K. Recent advances in cardiovascular regenerative medicine: the induced pluripotent stem cell era. Expert Rev Cardiovasc Ther 2008; 6(6): 803-10.
(111) Fukuda K. Application of mesenchymal stem cells for the regeneration of cardiomyocyte and its use for cell transplantation therapy. Hum Cell 2003; 16(3): 83-94.
(112) Yoon YS, Park JS, Tkebuchava T, Luedeman C, Losordo DW. Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction. Circulation 2004; 109(25): 3154-7.
(113) Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001; 410(6829): 701-5.
(114) Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 2004; 428(6983): 664-8.
(115) Bel A, Messas E, Agbulut O, Richard P, Samuel JL, Bruneval P, et al. Transplantation of autologous fresh bone marrow into infarcted myocardium: a word of caution. Circulation 2003; 108 (Suppl 1): II247-52.
(116) Norol F, Merlet P, Isnard R, Sebillon P, Bonnet N, Cailliot C, et al. Influence of mobilized stem cells on myocardial infarct repair in a nonhuman primate model. Blood 2003; 102(13): 4361-8.
(117) Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 2004; 428(6983): 668-73.
(118) Segers VF, Lee RT. Stem-cell therapy for cardiac disease. Nature 2008; 451(7181): 937-42.
(119) Bartunek J, Vanderheyden M, Vandekerckhove B, Mansour S, De Bruyne B, De Bondt P, et al. Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: feasibility and safety. Circulation 2005; 112(9 Suppl): I178-83.
(120) Mansour S, Vanderheyden M, De Bruyne B, Vandekerckhove B, Delrue L, Van Haute I, et al. Intracoronary delivery of hematopoietic bone marrow stem cells and luminal loss of the infarct-related artery in patients with recent myocardial infarction. J Am Coll Cardiol 2006; 47(8): 1727-30.
(121) Wall ST, Walker JC, Healy KE, Ratcliffe MB, Guccione JM. Theoretical impact of the injection of material into the myocardium: a finite element model simulation. Circulation 2006; 114(24): 2627-35.
(122) Xu X, Xu Z, Xu Y, Cui G. Effects of mesenchymal stem cell transplantation on extracellular matrix after myocardial infarction in rats. Coron Artery Dis 2005; 16(4): 245-55.
Cómo citar
Skuk D. Trasplante de células miogénicas. Rev. Méd. Urug. [Internet]. 30 de septiembre de 2009 [citado 20 de septiembre de 2021];25(3):181-97. Disponible en:
Trabajos de Revisión o Actualización y Puestas al día